MUCATAR

People Tracking and Activity Recognition using
Multiple Cameras

White Paper IM2 IM2.WP.MUCATAR

D2:

Sequential Monte Carlo Software - Description

Technical informationsrelated to thisreport:

Project title : MUCATAR

Delivrable type : Public

Deliverable number : D2

Contractual Date of Delivery: July 2003

Actual Date of Delivery: July 2003

Deliverable title : Sequential Monte Carlo Software - Description
Nature of the Deliverable: Software and software description

Jean-Marc Odobez IDIAP

Authors: Daniel Gatica-Perez IDIAP

Keyword list : Sequential Monte-Carlo - Software - Torch3.

Contents
1 Introduction

2 Algorithmic description - Main elements of software
2.1 Particlefiltering
2.2 Basicelements of the software

3 Installation - An example of use
3.1 Installation - Software organization
3.2 Anexample

4 Application to visual tracking - Conclusion

HIVIA.VVIELIVIEUN/VT /TN Yo, Joyutlitd IVIVIEILG LAl TU JUTvvdl © - LJCoul LU vt

1 Introduction

This report describes the software developped at IDIAP to implement the Sequential Monte-
Carlo (SMC) filtering techniques. Generic and modular tools have been implemented. All
the algorithmic parts that are application-independant are integrated into the Torch3 envi-
ronment (www.torch.ch).

In this report, we first recall the basics of SMC filtering and describe the main elements
of the software. In Section 3, we explain how to install the software, and provide an example
of use in a simple filtering case. We then provide some indication on the implemented visual
tracking algorithms and conclude.

2 Algorithmic description - Main elements of software

2.1 Particle filtering

Particle filtering is a technique for implementing a recursive Bayesian filter by Monte-Carlo
simulations. The key idea is to represent the required density function by a set of random
samples with associated weights. Let co.x = {¢,] = 0,...,k} (resp. z1x = {z,l =
1,...,k}) represents the sequence of states (resp. of observations) up to time k. Further-
more, let {ci,,, wi} > denote a set of weighted samples that characterizes the posterior
probability density function (pdf) p(co.x|2z0:%), where {c.,7 = 1,..., Ng} is a set of sup-
port points with associated weights w}. The weights are normalized such that), w} = 1.
Then, a discrete approximation of the true posterior at time & is given by :

N

Pcoklzin) = Y whé(cor — ch) - @)

i=1
The weights are chosen using the principle of Importance Sampling (IS), and the goal of
the particle filtering algorithm is the recursive propagation of the samples and estimation
of the associated weights as each measurement is received sequentially. Under the three
hypotheses commonly made to derive the standard particle filter :

1. The state sequence cg., follows a first-order Markov chain model, characterized by
the definition of the dynamics p(cx|ck—1)-

2. The observations {z;}, given the sequence of states, are independent. This leads to
P(z1:k|cok) = Hle P(zk|ck), which requires the definition of the individual data-
likelihood p(zk|ck) ;

3. The prior distribution p(zq.x) is employed as importance function. In this case,
q(cklcor—1,21:%) = P(ck|cr—1)-

we obtain the following recursive equation for the weight :
wy o wh_y P(zklck). 2
It is known that importance sampling is usually inefficient in high-dimensionnal, which
is the case of the state space cg., as k increases. To solve this problem, an additional
resampling step is necessary, whose effect is to eliminate the particles with low importance
weights and to multiply particles having high weights, giving rise to more variety around

the modes of the posterior after the next importance sampling step.
Altogether, we obtain the standard particle filter that is displayed in Fig. 1.

MUCATAR_D2_IDIAP 1

HIVIA.VVIELIVIEUN/VT /TN Yo, Joyutlitd IVIVIEILG LAl TU JUTvvdl © - LJCoul LU vt

1. Initialisation, k=0
Fori=1,..., N, sample c§ ~ p(co) and set k = 1

2. Importance sampling step

e Fori=1,...,N,, sample & ~ p(cg|ci_,)
e Fori=1,..., Ny, evaluate the importance weights : &% oc wi_; p(zx|c.)
e Normalize the importance weights @?

3. Selection step

e Resample with replacement N, particles {c}'c,w;'c = Nis} from the sample set
{&”;ga wk}

e setk =k + 1and go to step 2

Figure 1: The SIR algorithm.

2.2 Basic elements of the software

Analising the SIR algorithm (1), we can see that it is charcacterized by the following ele-
ments :

1. the definition of a state space with state elements c.

2. the definition of a particle distribution, characterised by a set of particles c* and asso-
ciated weights w*

3. the definition of the dynamics p(ck|ck—1). Itis a conditional distribution from which
we can sample from (see step 2).

4. the definition of the data-likelihood p(zg|ck). It is a conditional distribution that we
can evaluate (see step 2).

Accordingly, we have defined similar C++ classes that match these elements :

1. a class for the state (bf_-RandomVariable). It has a generic structure to contain the
state data elements.

2. a particle distribution class, bf_ParticleDistribution, to handle a particle set, and be-
ing able to sample from it.

3. ageneric set of classes to represent distributions (cf files bf_Distribution.h bf Distribution.h)
that are conditional or not, that can be sampled or evaluated. A variant of these have
been defined to handle simple state variables characterized by a vector or reals (cf
files bf DistributionReal.h, bf DistributionReal.h). These classes can be used to define
the dynamical model and the data-likelihood term.

The algorithm itself is implemented in the particle filter class bf ParticleFilter, whose
header is given is printed in (2). It is easy to see that it requires the above mentioned
elements to be defined at creation. Note that the implementation of the loop is performed

MUCATAR_D2_IDIAP 2

HIVIA.VVIELIVIEUN/VT /TN Yo, Joyutlitd IVIVIEILG LAl TU JUTvvdl © - LJCoul LU vt

in another class (called bf Trainer, although it does not train anything), and requires the
definition of a data random variable providing data in sequential order.

To illustrate the use of these classes, we present the implementation of a basic example
in the next section.

3 Installation - An example of use

In this section, we first describe the installation of the software and its structure. We then
explain in detail an example of use of the software.

3.1 Installation - Software organization

The software is based on the Torch3 software package (www.torch.ch), though not much of
it is used. It is available as a large archive (that already includes the Torch package). The
image processing parts are based on the opencv library?.

The main difference with respect to Torch is the addition of three directories in the base
directory of the Torch package :

o the bayes filter directory : it contains all the bayes generic filtering classes.
¢ the image_processing directory : it contains all the image related classes.

e the bayes.image directory : it contains the implementation of all the classes that
specifically implement the bayes filtering classes for visual tracking.

An associated library is generated with each of these directoy.

To install the software, unzip it and untar it. It compiles and runs under both Linux and
Unix. The package includes a Makefile, and a Makefile _options_Linux where you can change
some options (select the g++ compiler, add libraries to compile your own program, etc). To
compile the libraries (the Torch one and the new ones), you need to apply the following
steps :

e make clean : remove the dependency files, the object files and the libraries for the
current system.

e make depend : create the dependency files.

e make : compile the libraries.

3.2 Anexample

To illustrate the programing, let us consider a one dimensional example. In this example,
the dynamics is given by :

T =2 1+ (Tp 1 — T 2) +V

where v is a random gaussian noise with variance og,,,. Thus, we need an augmented state
¢, = (zk, 1) and the “full” dynamic is given by :

¢, = Acy_1+ By

Yfreely available at http://www.intel.com/research/mrl/research/opencv/

MUCATAR_D2_IDIAP 3

HIVIA.VVIELIVIEUN/VT /TN Yo, Joyutlitd IVIVIEILG LAl TU JUTvvdl © - LJCoul LU vt

#ifndef BF_PARTICLEFILTER.INC
#define BF_PARTICLEFILTER.INC

#include “general.h”

#include ”bf_RandomVariable.h”
#include ”"bf_ParticleDistribution.h”
#include ”"bf_Distribution.h”
#include ”bf_PredictModel .h”
#include "bf_BayesFilter.h”

namespace Torch {
/A
/xx Implements the basic particle filter (condensation)

@author Jean—Marc Odobez (Jean—Marc.Odobez@idiap .ch)
@author Daniel Gatica—Perez (gatica@idiap.ch)
*/

class bf_ParticleFilter : public bf_-BayesFilter

public:
/1 members

bf_ParticleDistribution * m_pParticleSet;
bf_ParticleDistribution *x m_pParticleSetAux;
bf_SamplePredictModel *m_pDynamicModel ;
bf_EvalCondDist *m_pObservationLikelihood;

// member functions

f/A——

bf_ParticleFilter (bf_ParticleDistribution xpPrior,
bf_ParticleDistribution xpAux,
bf_-SamplePredictModel xpDynMod,
bf_EvalCondDist x pObsLike);

PICELLTEEL L r i iriirt

/1 functions inherited from class BayesianFilter
PICLLLTETE L r i i irnint
f/A—

virtual void init(void);

f/A——
/1 Prediction step of the algorithm
virtual void predict(void);

f/A—
/1 implements that update step of the algorithm
virtual void observe(bf_.RandomVariable xpData);

f/A—
/1 may be needed by more general particle filters
virtual void update(void);

f/A——
/1 performs one iteration of the algorithm
virtual void iterate (bf_-RandomVariable xpData);

PILELETTLL LT i it riiinsi
I/ specific member functions of particle filter
RNy

/1 to exchange the particle distribution
virtual void exchange(void);

/1 implement a resampling step, if necessary
virtual void resample(void);

f/A—
virtual “bf_ParticleFilter ();

}:
}

#endif

Figure 2: The particle filter class bf_ParticleFilter.

MUCATAR_D2_IDIAP 4

HIVIA.VVIELIVIEUN/VT /TN

Yo, Joyutlitd IVIVIEILG LAl TU JUTvvdl © - LJCoul LU vt

15

0.5

-15

-2

20 30 40 50 60 70 80 90 100

(a) particle filtering

Figure 3: Example of particle filtering : 100 particles. In green, the observations. In red,
the mean of the samples. In blue, plus/minus one standard deviation.

with :

The likelihood is classically given by :

2k =Tk + 1

where 7 is a random gaussian noise with variance o7, ., leading to a likelihood function :

(o — z/c)Q)

p(zxler) o exp (—
20l2ike

The figure 4, 5 and (6) display how the example was coded using the software. Fig-
ure 3.2 shows a plot of running the executable.

4 Application to visual tracking - Conclusion

The same methodology has been applied to the visual tracking case. We have developped
trackers that are based on histogram likelihoods, contour likelihoods, the product of both
(see deliverable D1). Figure 7 shows as an example the options available with the histogram

tracker.

It handles different color representations as well as different transformation. The soft-
ware has been made modular so that each component (likelihood, sequential monte-carlo
method, dynamics) can be changed easily.

MUCATAR_D2_IDIAP

HIVIA.VVIELIVIEUN/VT /TN

Yo, Joyutlitd IVIVIEILG LAl TU JUTvvdl © - LJCoul LU vt

#include < stdio . h>

#include "bf_DynamicModel.h”

#include "bf_MixedParticleDistribution.h”
#include ”bf_DataRandomVariable.h”
#include "bf_ParticleFilter.h”

#include "bf_Trainer.h”

using namespace Torch;

/%
[xk+1 xk] = A [xk xk—1]+B nu

A =12 —1; 1 0] (A=Fx in implementation) B = [1]

nu = noise

*/

variance sigma2;

class MyPredictor

public :

bf_RandomGenerator mg;

public :
MyPredictor (float sigma2=1.)
bf_LinearPredictModelReal(2,1,&rng) {
m_pRng=&rng;

Fx.ptr[0][0]=2; Fx.ptr[0][1]=—1;
Fx.ptr[1][0]=1; Fx.ptr[1][1]=0;

G.ptr[0][0]=1;
q.ptr[0]=sigma2;
}
“MyPredictor (){ }

3

public bf_LinearPredictModelReal {

11

/1 likelihood (p(yk]| [xk xk—1]) proportional to exp(—(yk—xk)"2 / (2% sigma2))

1 yk = data, x = [xk xk—1] = state

class MyLikelihood virtual public bf_EvalCondDistReal {
public :
real m_rCoef;
MyLikelihood (real sigma2) : bf_EvalCondDistReal () {

m.rCoef = 1./(2x*sigma2);

}
/1 computing P (X | Y) : here first element of state is
virtual inline real evaluateConditionalReal (real xpX,real xpY){

return exp(—m_rCoefx(xpX—pY)x (xpX—pY));

“MyLikelihood () {}

3

Figure 4: Classes to implement the particle filter example. The prediction model and the

likelihood model.

MUCATAR_D2_IDIAP

HIVIA.VVIELIVIEUN/VT /TN Yo, Joyutlitd IVIVIEILG LAl TU JUTvvdl © - LJCoul LU vt

#include < stdio . h>

#include "EasyExampleClassesl.h”
#include ”"bf_MixedParticleDistribution.h”
#include ”bf_DataRandomVariable.h”
#include ”bf_Trainer.h”

using namespace Torch;

1
/1 My Data should be read from a file. Here we use a model to
/1 generate them

11

class MyData : virtual public bf_DataRandomVariable {

public :
real observation,w,wv, iter;

MyData () { w=0.08; iter =0; addToData(&observation); }
inline virtual void initData (){ wv=wx(1+0.9%cos(iter x0.1)); observation=(real)(cos(wvxiter)); }
inline virtual void nextData(){ iter++; wv=wx(1+0.9xcos(iter x0.1)); observation=(real)(cos(wvxiter)); }

inline virtual bool dataAvailable(){ return true; }

“MyData (){}

11

class MyTracker : public bf_Trainer {

/I— — members

public:
/1 for the particles
bf_.RandomGenerator *m_pRngl;
bf_.RandomGenerator *m_pRng2 ;
bf_MixedParticleDistribution xm_pPosteriorDistribution;
bf_MixedParticleDistribution «xm_pAuxDistribution;

/1 for the dynamical model
MyPredictor *m_pDynamics;

/1 for the likelihood
MyLikelihood *m_pLikelihood ;

/1 pointers to filter and data are inherited from the Trainer
/1 nevertheless, here we declare a particle filter
bf_ParticleFilter *m_pParticleFilter;

MyTracker (bf_-DataRandomVariable xpZ,int NberOfParticles,
real sigma2Dyn=1.,real sigma2Like=1.) :
bf_Trainer (NULL,pZ) {

m_pRngl=new bf_RandomGenerator(3); m_pRng2=new bf_RandomGenerator(2);

int StateSize=2;
m_pPosteriorDistribution=new bf_MixedParticleDistribution(NberOfParticles,1, StateSize,0,m_pRngl);
m_pAuxDistribution=new bf_MixedParticleDistribution(NberOfParticles,1, StateSize,0, m_pRng2);

m_pDynamics=new MyPredictor (sigma2Dyn);

m_pLikelihood=new MyLikelihood (sigma2Like);

m_pParticleFilter =new bf_ParticleFilter(m_pPosteriorDistribution, m_pAuxDistribution,
m_pDynamics, m_pLikelihood);

m_pBayesFilter = m_pParticleFilter;

f——
void init(long N=—1){
bf_Trainer::init(N);

real xinitstate=new real [2];

/1 initialization with the first data obervation available
initstate [0]=m_pDatalnput—>m_cData.nodes[0][0];

initstate [1]=m_pDatalnput—>m_cData.nodes[0][0];
m_pPosteriorDistribution—>setAllSample(initstate ,0);

}

——

“MyTracker (){
delete m_pDynamics; delete m_pRngl; delete m_pRng2;
delete m_pPosteriorDistribution; delete m_pAuxDistribution;
delete m_pParticleFilter; delete m_pLikelihood;

}

H

Figure 5: Classes to implement the particle filter example. The data class and the tracker
itself

MUCATAR_D2_IDIAP 7

HIVIA.VVIELIVIEUN/VT /TN Yo, Joyutlitd IVIVIEILG LAl TU JUTvvdl © - LJCoul LU vt

#include "EasyExampleClasses2.h”

int main (int argc, char xxargv)

{
int iter,Nblter=100,NbParticles=100;
MyData md;
real sigma2Dyn=0.5,sigma2Like=0.5;

MyTracker mt(&md, NbParticles,sigma2Dyn, sigma2Like);
mt.init();

/1 filtering loop

iter=0;

while(iter<Nblter){

/1 perform iteration with current data
mt.iterate ();

/1 DISPLAY SOME RESULT
bf_MixedParticleDistribution = pCurrent=(bf_MixedParticleDistribution *)mt. m_pParticleFilter—>m_pParticleSet;

real mean[2], variance[2];

/1 Getting mean and variance
pCurrent->getMeanVariance (mean, variance ,0);

/! output observation, mean and variance
printf ("%f_\ t%f_\ t%f_\n",md. observation,mean[0], variance [0]);

/1 switch to next data
mt. nextData();

iter++;

Figure 6: The main file for the example.

Tracking a square regi on based on color histograns and particle filter

#

usage: Linux_OPT_FLOAT/ TrackH [options] <Onel mageNanme> <First> <Last>

#

Argunents:
<Onel mageNane> -> Nane of one of the image in the sequence (<string>)
<First> -> nunber of the first image to process (<int>)
<Last > -> nunber of the last image to process (<int>)

General options:
-step <int> -> step between two image nunber [1]
-transform<int> -> transformation to track :

1(transl ation+scal e) 2(trans+scal ex+scal ey) others (translation) [1]
-imagedir <string> -> directory of the input inmages []

Particle Filter options:
-nbsanpl es <int> -> nunber of particle sanples [500]

Hi stogram | i kel i hood opti ons:
-colornmodel <int> -> color nodel (1 = HSV, 0 = RGB) [1]
-colornodel <int> -> nunber of bands to keep (for histogram ng)
in the chosen nodel [3]
-nbbin <int> -> nunber of bins in the histogram][8]
-l anbdah <real > -> |anbda coefficient in exponential distribution [19.5312]
-partitionh <real> -> partition function of the exponential distribution [1]

Initial box options:
-botrightco <int> -> colum nunber of bottomright initial box corner [-1]

-botrightli <int> -> line nunber of bottomright initial box corner [-1]
-upleftco <int> -> colum nunber of bottomright initial box corner [-1]
-upleftli <int> -> colum nunber of bottomright initial box corner [-1]

-splitheight <int> -> nunber of box split of the height [1]
-splitwidth <int> -> nunber of box split of the width [1]

Dynami cs opti ons:
-trans_std <real > -> noise standart deviation (translation conponents) [2]
-affine_std <real > -> noise standart deviation (affine conponents) [0.01]

Figure 7: Example of options of the histogram tracker.

MUCATAR_D2_IDIAP 8

