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Problems: Localization and Classification Convolutional Neural Network Data
Localize sound sources and classify them into speech or non-speech sources in Fully convolutional neural network with residual net- Loudspeakers
complicated human-robot interaction scenarios: work trunk and two task-specific branches: e 32 hours train / 17 hours test
. - Jn o Speech: AMI Corpus
e Simultaneous sound sources tar @Cp € e Non-speech: AudioSet
e Speech and non-speech sources E & Raw STET Input
e Strong robot ego-noise ((“%J)) — ’;{@é Human talkers
e 0 C e 8 minutes test
: : : : 1x7 conv, stride (1,3), ch 32
Contribution: Jointly Solving Both Tasks ¥
| | o | 1x5 conv, stride (1,2), ch 128 MethOdS
Sound localization and classification can help each other: e, | |
e | ocalization provides spatial information for classification. N identity MTNN: The proposed multi-task netwprk.
L. . . . L ; 1x1 conv, ch 128 : MTNN-N2S The proposed methods without the two-stage scheme.
e (Classification provides spectral information for localization. | ;

SSL+BF+SNS Sequentially localize, beamform and classify sounds with NN.

However, previously the localization and classification are solved sequentially. | >3 on ch 128 MTNN-CTX The proposed methods with temporal context.
We propose solving both tasks jointly using a multi-task neural network. | 1x1 conv, ch 128
- e o a Results
System Overview i N
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The network outputs on each direction, the likelihood of the presence of a sound PO (30 < PO (30 < Recall Recall
source (SSL likelihood, p = {p;}) and the likelihood of the sound being a speech 1x1 conv. ch 500 1x1 conv. ch 500 (b) Human (3k frames) (b) Human (3k frames)
source (SNS likelihood, q = {¢;}). v v b == b=
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ground truth sources. < — I | 1, L MTNeTX
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source IS speech. Azimuth Direction - L :
Output of Stage 1 corresponds to local time- Speech/Non-speech Classification Conclusion
Loss function: frequency area In the input because of the convo- -
Loss = ||p — p||2 + Nzwi G — qi|? lutions. So we train the network in two steps: Dataset Loudspeaker  Human ® Significant  better  performance
, compared to SSL+BF+SNS In clas-
1

. L - SSL+BF+SNS 0.80 0.68 en L S
The SNS loss is weighted by {w,}, which depends on its distance to the nearest L. Supervision on Stage 1 to initiate early predic- MTNN-N2S 0.93 0.82 sification and speech localization.

source, so that the network Is trained with the emphasis around the directions tions on each 1F point. MTNN 0.95 0.85 e Further Improvement by adding
of the active sources. 2. Train network end-to-end. MTNN-CTX 0.96 0.89 temporal context.




