Adaptation of Multiple Sound Source Localization Neural Networks with Weak Supervision and Domain-Adversarial Training

Weipeng He^{1,2} < weipeng.he@idiap.ch>, Petr Motlicek¹, Jean-Marc Odobez^{1,2}

¹Idiap Research Institute ²Ecole Polytechnique Fédérale de Lausanne

Learning-based DOA Estimation

Require a large amount of training data <u>lssues</u>:

- Data collection and annotation is costly
- Simulation does not match reality

Idea

Weak Supervision

- Weak label reduces space of possible correct network output
- Minimize the distance between the output and the reduced space

Domain-adversarial Training

Extract domain-invariant features by making features of different domains difficult to distinguish

Experiments

- Microphone array on Pepper: 4 microphones
- Frames are of <u>170 ms</u> with <u>0-2 sources</u>
- : simulation + robot fan noise, <u>1M frames</u>
- Adaptation: loudspeaker data from SSLR dataset*, 500k frames
- : loudspeaker and human test data from SSLR dataset **Test**
- Detections with less than 5° error are correct

*SSLR dataset: http://www.idiap.ch/dataset/sslr/

Conclusion

- Adaptation with weakly labelled data largely reduces the amount of data collection work for learning-based DOA estimation.
- Weak supervision on real data with known number of sources significantly improves an unadapted model.
- Domain-adversarial training does not yield significant improvement