Adaptation of Multiple Sound Source Localization Neural Networks
with Weak Supervision and Domain-Adversarial Training
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Weak Supervision Experiments

B Weak label reduces space of possible correct network output B Microphone array on Pepper: 4 microphones
B Minimize the distance between the output and the reduced space ®  Frames are of 170 ms with 0-2 sources
Output space: [0, 11" B Training :simulation +robot fan noise, 1M frames A
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Conclusion
Ayimuth Direction B Adaptation with weakly labelled data largely reduces the amount of
(d) failed case data collection work for learning-based DOA estimation.
%‘: A B Weak supervision on real data with known number of sources
% A significantly improves an unadapted model.

Azimuth Direction B Domain-adversarial training does not yield significant improvement



