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Abstract— Despite remarkable progress in various human
behavior perception tasks, head gesture recognition (HGR) has
received limited attention in terms of datasets, benchmarks,
and methods. In this work, we aim to address this gap and
make two main contributions. First, we densely annotated the
existing large-scale conversational dataset CCDb with diverse
head gesture categories. This results in the CCDb-HG dataset,
which can serve as a comprehensive benchmark for HGR
research. Secondly, while previous gesture recognition methods
have largely relied on head pose or facial landmarks as input,
we propose to explore in addition the use of gaze to resolve
ambiguous cases. This follows from the fact that head dynamics
in interactions is driven by two main functions: communication
(i.e. head gestures) and attention (i.e. gazing at other people or
objects of interest). In fact, the head dynamics associated with
attention activities can be confused for communication gestures,
even though the gaze patterns are quite different in the two
cases. In addition, we study several geometric and temporal
data augmentation techniques to improve the generalization
across novel viewpoints, as well as different model architectures
to establish baseline performance on CCDb-HG. Our findings
provide insights into various aspects of HGR and motivate
further research in this field. To facilitate reproducibility, we
will release the CCDb-HG annotations, code, and HGR models.

I. INTRODUCTION

Nonverbal behaviors are a fundamental aspect of human
communication, encompassing a wide range of non-linguistic
cues that convey information beyond spoken words. These
behaviors include facial expressions, body language, eye
contact, vocal prosody, and other subtle cues that collectively
play important roles in face-to-face settings [5]. Amongst
them, head gestures play an important role in conversations
where they express a multitude of essential functions related
to speech production, turn talking, cognitive states, and emo-
tions [24]. Indeed, head gestures convey meanings like agree-
ment or disagreement, understanding or confusion, approval
or disapproval, interest or boredom [9], [10]. Furthermore,
head gestures can communicate nuanced information, adding
depth and intricacy to interpersonal relationships [24].

However, despite their crucial role in communication,
recognizing head gestures has not received adequate atten-
tion regarding comprehensive public datasets encompassing
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Fig. 1: Visual examples of the head gesture categories used in
CCDb-HG (see Section III-A for their definition). Note that
in communication gestures (nods, shakes, tilts), gaze is often
fixated, which is not necessary the case of other gestures.

various real-life situations and contexts, standardized bench-
marks and metrics for accurately evaluating the performance
of HGR models, as well as novel models and methods. This
paper makes a step in this direction, introducing significant
dataset annotations, as well as a novel and more holistic
approach for head gesture recognition.
Datasets. Regarding datasets, several challenges persist.
First, many existing datasets are not publicly available [2],
[24], [26], [33]. Second, some datasets [2], [23] have only
been limited to gesture labels like nods, which is not enough
to represent the diversity of gestures found in real-world
scenarios. Additionally, many datasets are small in scale [1],
[2], [23], limiting their ability to capture the diversity of
head gestures. To address these issues, we annotate all
video recordings in an existing large-scale conversational
dataset CCDb [1] with head gestures and introduce CCDb-
HG. Compared to existing datasets, CCDb-HG is the largest
publicly available head gesture dataset with diverse gesture
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classes, as shown in Tab. I and Fig. 1. The release of CCDb-
HG along with evaluation code will provide a valuable re-
source for the head gesture recognition community, enabling
researchers to develop more advanced models and methods.
Methods. By definition, almost all existing methods for
HGR primarily rely on sequences of head pose information
(or facial landmark motion as proxy) as input [2], [11],
[12], [18], [20]–[22], [25], [27], [29]. However, since head
dynamics are naturally driven by gaze activities and commu-
nication, relying solely on head pose may lead to sub-optimal
solutions, as certain head motion actions driven by attention
can be misrecognized as communicative head gestures. For
instance, a quick look downwards on a table and back to
the interlocutor can be mistaken for a nod. Similarly, in
a multiparty setting, a brief sideways glance from looking
at a speaker to a second person (to check her reaction to
the speech) and back could be incorrectly interpreted as a
head shake. The source of confusion could be alleviated
by exploiting gaze, since in communicative gestures (nods,
shakes, tilt), gaze is often fixated, whereas in attention shifts,
eyes and head motions are often coordinated (see Fig. 1). It
is thus crucial to consider and model the interplay between
head pose and gaze (eye) activities to avoid such confusions.

Generalization across expected data changes is another
important factor to consider and is not so well studied as
shown by the very limited amount of work that evaluates
cross-dataset performance. For instance, models trained on
purely frontal views (e.g., dyadic settings) may struggle with
non-frontal views (e.g., group settings). To alleviate this
issue, as head gestures are dynamic by nature, one may rely
on motion cues and rate of changes [20]–[22], [24], [25], [27]
rather than sequences of raw features (e.g. head pose angles),
or even better, extract rotation invariant measures [2]. When
using deep learning models, an alternative is to consider
appropriate data augmentation techniques to increase data
diversity and generalize to new settings.

In this paper, we explicitly study the benefits of data
augmentation approaches. First, we introduce Geom-DA,
a geometric augmentation technique explicitly designed to
generate novel viewpoints for the input representation (pose,
landmarks, gaze) of the head gesture recognition systems,
hence promoting viewpoint invariance during model training
and potentially removing the need for using specific features
like dynamics. Secondly, we evaluate different temporal
augmentation techniques, like standard perturbations used
in time series analysis [30], but also consider a temporal
version of the Mixup [7] data augmentation scheme, which
has always improved results for image analysis tasks.

Finally, we investigate various deep learning models, en-
compassing 1D-CNN, GRU, LSTM, and temporal convolu-
tional networks (TCN) [15], to benchmark them on CCDb-
HG and explore their appropriateness for gesture recognition.
Contributions. Our results highlight that CCDb-HG offers a
good benchmark for addressing the head gesture recognition
task, presenting new opportunities for training deep learning
models with good generalization capacity. In addition, we ex-
plore several factors (input, data augmentation, architecture)

that can lead to effective head gesture recognition systems.
In summary, our contributions are as follows:

• We densely annotated the CCDb dataset with several
head gesture categories, leading to CCDb-HG, the
largest head gesture dataset publicly available;

• We are the first to explore the influence of gaze as an
auxiliary cue for head gesture recognition, demonstrat-
ing higher accuracy in general and more robustness;

• We investigate several factors for designing robust head
gesture recognition methods (spatial and temporal data
augmentation, need for invariant features, architecture)
and throughly evaluate their impact on both within and
cross-dataset settings.

Finally, by releasing our annotations, evaluation code, and
HGR models, we aim to promote reproducibility, provide
useful benchmarks, and stimulate further advancements in
the field of non-verbal behavior analysis in the future.

II. RELATED WORK

Head Gesture Datasets. Previous studies have primarily
been evaluated within controlled laboratory settings [11],
[12], [18], [29], where participants were directed to perform
specific gestures, notably nods or shakes. To enrich this
taxonomy, seminal works like [32] and [14] introduced cod-
ing schemes with five additional categories, contributing to
defining a more comprehensive understanding of the diverse
spectrum of head movements. Furthermore, endeavors to
capture natural human interactions in ecologically relevant
settings yielded datasets like NOMCO [26] and FIPCO [33].
Unfortunately, these datasets are not publicly available.

The Cardiff Conversation Database (CCDb) [1] stands out
as a publicly accessible dataset with acceptable resolution
and natural conversational content including head gestures.
However, its existing annotations are limited both in size and
gesture categories and, at times, quality. Leveraging CCDb,
we have annotated the entire corpus with a diverse head
gesture set, ensuring meticulous and high quality annotations
through a refined protocol, resulting in CCDb-HG.
Head Gesture Methods. Typical framework consists of
two distinct steps: feature extraction, and classification. Re-
garding the former, some works focused on tracking facial
attributes like eye location and nose [11], [12], [18], [22],
[25], [29] which is enough for capturing simple gestures like
nods and shakes but faces challenges for other gestures like
tilts and waggles and in generalizing to different viewing
angles. With advancements in pose estimation [13], 3D
head orientation became more extensively used [2], [20],
[21], [24], [27], potentially combined with facial landmarks
[27]. In our work, we enrich the representation of facial
behavior by incorporating gaze as an additional modality, and
unlike many previous works, we consider all inputs in 3D,
including head pose, landmarks, and gaze, enabling a more
generalizable representation across various dataset settings.

Additionally, many of the works have used relative dif-
ferences such as velocity [2], [22], [24], [25]. Relative
differences are particularly valuable for capturing motion
patterns. However, in [27], they used position and velocity for
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Datasets #Videos #F #E #S #G A
Ubimpressed [2] 11, 50min 10k 407 11 1 ✗
FIPCO [33] 30, 15h NA NA 15 10 ✗
NOMCO [26] 12, 12h 72k 3k 12 9 ✗
KTH-Idiap [23] 9, 50min 3.6k 136 9 1 ✓
CCDb [1] 30, 2h 16k 403 16 3 ✓
CCDb-HG (ours) 115, 8h 178k 5k 22 6 ✓

TABLE I: Head gesture datasets (#F: Frames, #E: Events,
#S: Subjects, #G: Categories, A: Public availability).

the head pose and position only for the landmarks. We can
argue that absolute position input contains richer information
and that a model can learn to capture motion patterns. In
our work, we investigate and compare the differences and
potential advantages of both relative and absolute inputs.
Building on the idea of invariant head pose features for
robustness in diverse viewpoints introduced in [2], we extend
this concept to landmarks and gaze, comparing it with a
viewpoint data augmentation approach.

Data augmentation has received limited exploration in
HGR. A notable exception is [27], which addressed data
imbalance and limited diversity by generating additional
gestures with varying speeds and scales, but did not present
any ablation study. Here we explore the efficacy of similar
standard time series augmentation [30] (TS-DA) and the
temporal version of Mixup [7] (Mixup-DA).

Finally, various classifiers have been used for HGR.
Early models included Hidden Markov Models [11], [12],
[18], [29] and Support Vector Machine [22], demonstrating
promising performance but struggling with scalability on
large-scale datasets. Deep learning models, like Multi-Layer
Perceptron [25], Convolutional Neural Network (CNN) [24],
LSTM and Conv-LSTM architecture [27], have also been
explored. In our work, we rely on these architectures to
establish informative benchmarks on CCDb-HG, shedding
light on their performance in challenging HGR scenarios.

III. THE CCDB-HG HEAD GESTURE DATASET

In this section, we introduce the CCDb-HG dataset, which
extends the full Cardiff Conversation Database (CCDb)
dataset [1] with a dense and comprehensive set of gesture
annotations, as described below.

A. The CCDb dataset

The CCDb dataset was collected to facilitate the detection
and prediction of facial backchannel expressions and ges-
tures. It comprises 49 non-scripted, natural dyadic conversa-
tions between pairs of individuals, recorded from a frontal
viewpoint with a focus on the upper body. Only eight of these
conversations have full annotations for speaker activity, facial
expressions, head motion, and non-verbal utterances.

Annotations are available for three head gesture categories
(Nod, Shake, and Tilt). However, it was observed that the
quality of annotations was unsatisfactory with many gesture
instances missing. Thus, to increase the size, diversity, and
quality of annotated data in the CDDb dataset, we fully
annotated 49 conversations with six head gesture categories.

B. Head Gesture Categories: Definitions

Defining head gestures is difficult, since, their form are
sometimes not fully specific and can significantly vary
amongst individual people, and because the same gestures
can serve multiple functions [24]. As our aim was to go
beyond nods and shakes while remaining at a satisfactory
level of annotation agreement, we mainly follow the works
in FIPCO [27], [33] and Kousidis et al. [14] with few
modifications to define the categories. More specifically,
we adopt the 7-coarse head gesture categories introduced
in FIPCO, excluding categories involving body movements
(forward/backward) and static head gestures (i.e. looking
up or looking down). Instead, to focus on the recognition
of dynamic head movements, we added the two following
categories, namely, Waggle [14], [26], and Up/Down. The
definition of the head gesture categories is as follows.
Nod is an up-down rotation along the pitch axis. It involves
a slight, quick, or repetitive lowering and raising of the head.
It comes under different variations in FIPCO [33], namely
nod, jerk, and ticks. But as mentioned in [14], [27], those
gestures are difficult to disambiguate for annotators.
Shake is a left-right horizontal rotation along the yaw axis. It
involves a rapid and potentially repeated side-to-side motion,
typically with small or moderate amplitude.
Tilt is a sideways rotation along the roll axis, involving
a shift of the head in which one ear moves closer to the
shoulder while the other ear moves away.
Turn corresponds to a left or right rotation, involving the
shifting of the head from its original position to another one
facing a different direction. Head turns can vary in amplitude,
ranging from a slight turn to a complete reorientation of the
head. It differentiates from a shake by being a nonrepetitive
movement and often initiated by a gaze shift.
Waggle usually happens when speaking [14], [26], and
involves a rhythmic swaying motion typically performed in a
repeated manner. Unlike nod, shake, and tilt, waggle involves
several head axis at the same time.
Up/Down is similar to a turn, but along the pitch direction
and usually involves a gaze shift in the same direction as
the head. Note that this definition differs from the Up/Down
class in FIPCO, as it encompasses a dynamic movement and
unifies up and down into a single category.

C. Annotation Protocol

Two annotators were employed to annotate the CCDb
dataset using the head gesture definitions provided above.
Each annotator was assigned 50 videos for annotations, as
well as 15 videos which were annotated by both of them
to evaluate the inter-annotator agreement. The annotation
process comprised three stages: warm-up, dataset annotation,
and review. Before the main annotation, a warm-up session
was held where annotators practiced on four videos, received
feedback and continued until they reached an understanding
of the gesture classes. In the next phase, annotators annotated
all videos, raising concerns via issue reports for specific
segments. Finally, two domain experts reviewed the videos
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Gesture #F #E Frame F1 Event F1

Nod 97k 2469 0.80 (9k) 0.84 (250)
Shake 33k 848 0.83 (3.7k) 0.85 (91)
Tilt 14k 523 0.75 (1.7k) 0.71 (65)
Turn 16k 643 0.76 (2k) 0.81 (80)
Up/Down 6k 248 0.57 (0.6k) 0.63 (28)
Waggle 11k 192 0.06 (0.7k) 0.08 (12)
All 178k 4923 0.76 (17k) 0.79 (526)

TABLE II: Gesture distribution in CCDb-HG by number of
frames (#F) and events (#E), with Frame F1 and Event F1
representing annotator agreement on 15 randomly selected
videos (average annotated instances in parentheses). This
results in a Cohen’s Kappa coefficient of 0.75.

and annotations, addressing any annotator concerns to ensure
annotation accuracy and reliability.

Besides category-specific definitions, general guidelines
were given: gestures in the same category are segmented into
different events only if there is a noticeable gap, otherwise,
they are seen as one continuous sequence. In rare instances
where gestures occur simultaneously, the first gesture, as
ordered in Sec. III-B, is prioritized.

D. Analysis of Annotations

Tab. I underscores the unique attributes of CCDb-HG in
contrast to other datasets. Besides its public availability,
CCDb-HG distinguishes itself by offering a good compro-
mise in terms of amount of subjects, gesture category, and
data (duration, number of annotated events). Tab. II sheds
light on the distribution of frames and events per class,
revealing a known challenge namely, class imbalance: Nod
(54.4% of frames and 50.0% of events) or Shake (18.5%
of frames and 17.2% of events) occur more frequently than
others, resulting in an uneven sample distribution.

As mentioned earlier, we assessed the inter-annotator
agreement using 15 videos annotated by both annotators.
We calculate F1 frame and event scores for each category.
Results indicate a high level of agreement (overall Cohen’s
kappa score of 0.75), but the agreement for Up/Down is
slightly lower, and that of Waggle is really low. From
the inter-annotator confusion matrix (see Fig. A in sup.
materials), most of the disagreement is due to gesture events
being annotated by one person and not by the other, usually
because they are rather subtle instances, and not so much due
to inter-gesture confusion. The main exceptions is Waggle,
which is often confused with Shake, Tilt, and None. Indeed,
Waggle can sometimes be seen as a combination of these
gestures, leading to discrepancies between annotators. Note
that the number of instances of this category (12) in the 15
videos is rather low, so these results might not be significant.
Nevertheless, in view of the low agreement, we decided to
exclude the Waggle category in our experiments.

IV. METHOD

In this section, we first present an overview of our head
gesture recognition system. We then detail the methods used
for extracting the face related feature, as well as the different

alternatives to build our input representation. Subsequently,
we delve into the specificity of the deep network recognition
models and finally introduce the data augmentation tech-
niques aimed at enhancing generalizability and robustness.
Overview. Our recognition system is shown in Fig. 2. It
takes as input a facial video clip v, comprising T consecutive
frames ft with dimensions H ×W × 3. A feature represen-
tation Iet is created from the frame ft by extracting multiple
facial cues, including facial landmarks, head pose, and a gaze
vector. Subsequently, the sequence of Iet is pre-processed to
build the input representation It used as input to a trainable
head gesture classifier Cθ.

A. Multiple Cue Extraction

To represent the face sequence, various head and face cues
are extracted using the methods detailed below.
Head Pose. It is the primary cue for HGR [2], [27], providing
information about the head rotational movements. To com-
pute it, we extracted a set of 3D facial landmarks from the
video frame t, using the Mediapipe landmark detector [19],
and performed a Procrustes analysis between the extracted
landmarks and a canonical set of facial landmarks (3D face
model). This approach provides the orientation of the head
pose ht ∈ R1×3, that we encode as Euler angles (yaw, pitch,
roll) expressed in camera coordinates.
Facial Landmarks. Head pose information can be com-
promised by the accuracy of its estimator, which can lead
to noisy predictions in dynamic natural environments when
people are talking or exhibiting strong facial expressions. To
mitigate this, we exploit facial landmarks that can reinforce
and complement head pose information. As specified above,
we obtain 3D facial landmarks expressed in pixel units via
Mediapipe [19] and keep only 5 of them (near ears, eyes,
and nose) which are more immune to the above perturbation
and can be estimated accurately over time [27]. Furthermore,
as landmark positions in pixels are affected by resolution
variations and subject-camera distance, we normalize the
measures using the head size defined as the pixel distance
between the 3D ear landmarks. We end up with a vector of
3D landmarks lt ∈ R1×15.
Gaze. Some head movements are naturally driven by gaze
activities. Consequently, we incorporate gaze information as
an auxiliary cue to enhance the disambiguation of certain
head gestures. We employ a ResNet50 network with a
linear regressor, pre-trained on the ETH-XGaze dataset [34],
to estimate 3D gaze direction. This network processes a
normalized face patch as input, where normalization involves
canceling head roll rotation and maintaining a fixed face-
center to a virtual camera [34], [35], producing a normalized
gaze direction gnt in spherical coordinates. This direction
is then transformed back to the original camera coordinate
system, producing gt = (θt, ϕt) ∈ R1×2.

B. Input Representation

Altogether, our extracted features from a video clip v of
T frames form the multivariate time-series Ie ∈ RT×20,
encompassing head pose (h ∈ RT×3), facial landmarks
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Fig. 2: Approach overview. A face video clip v consisting of T frames ft is processed by different modules in E to
extract multiple head cues (head pose, facial landmarks, gaze). Extracted features are then pre-processed to derive the clip
representation I used as input of the gesture classifier Cθ. We explore different methods to handle variable viewpoints, like
extracting invariance cues in the preprocessing step, or generating data for novel viewpoints (Geom-DA data augmentation).

(l ∈ RT×15), and gaze (g ∈ RT×2). Given these cues,
our goal is to pre-process these features to obtain an input
representation according to I = P (Ie) to achieve different
goals and evaluate the impact of this processing on perfor-
mance on different datasets. More specifically, the variants
we investigate are named absolute (Abs), relative (Rel), and
Invariance (Inv):

Im = {hm, lm, gm}, where, m ∈ {Abs,Rel, Inv} (1)

Abs. We simply have IAbs = Ie. As I contains all informa-
tion, in principle, deep models should be able to identify the
patterns enabling the recognition of the different gestures
under all conditions. However, this is true as far as these
conditions are present in the data and we have enough data.
Rel. Relative differences are valuable for capturing dynami-
cal patterns. By focusing on changes, they provide important
information for identifying gestures while filtering out less
relevant viewpoint dependent variations. Thus, it can be
beneficial in low-data regimes, where IAbs struggle to handle
unseen views. Hence, to obtain IRel, we simply concatenate
the relative values derived through simple channel-wise sim-
ple differences, i.e. zRel

t = zt − zt−∆ where z ∈ {h, l, g},
and ∆ is a time difference that we set to 5 in practice
Inv. In real-world scenarios, head gestures can be observed
from different viewing angles since people are not always
facing the camera. Thus, a robust head gesture recognition
system must be viewpoint invariant, which is not intrinsically
the case when using IAbs or IRel . Following [2] which
addressed invariance for the head pose, our aim is to compute
an input representation IInv that is invariant to the viewpoint.
The main principle is to represent the different features (pose,
landmarks, gaze) at time t w.r.t to the coordinate frame
associated with the same features at time t − ∆. For the
head pose, we follow [2], in which the Euler angles of the
head pose at time t in the coordinate frame of the head pose
at time t−∆ is used as representation:

hInv
t = EA

(
RT (ht−∆)R(ht)

)
(2)

where R(h) denotes the rotation matrix associated with
the Euler angles h, and EA is the inverse function that
provides the Euler angles of a rotation matrix. For landmarks,
we express their relative positions w.r.t. the head center

p in a coordinate frame at time t − ∆ by rotating these
relative positions, and use their difference in position as
representation:

l′t−∆ = RT
t−∆(lt−∆ − pt−∆) + pt−∆

l′t = RT
t−∆(lt − pt) + pt

lInvt = l′t − l′t−∆

Finally, for gaze, we extent [2] as:

gInvt = EAsc

(
RT (gt−∆)R(gt)

)
(3)

where rotations (and Euler angles) are defined from spherical
coordinates in this case.

C. Data Augmentation

In this section, we introduce the different data augmenta-
tion schemes we have investigated to improve generalizabil-
ity. These comprise Geom-DA, which can be considered as
an alternative to address viewpoint robustness via geometric
augmentation, and the temporal augmentation methods TS-
DA and Mixup-DA to further boost robustness.
Geom-DA. In the pursuit of encouraging the network to
be invariant to viewpoint, we introduce Geom-DA which
aims at generating synthetic head gesture samples with novel
orientation. More precisely, Geom-DA operates by applying
the same rotation transformation on the entire sequence of
3D facial cues within a head gesture sample. This effectively
changes the head orientation while keeping the same head
motion. Importantly, to ensure realism and data balancing,
we monitor the head pose distribution of generated samples
so that it is close to the uniform distribution, and avoid
random rotations which can lead to unrealistic poses. Then,
given a realistic target head pose htarget, we modify a given
input sample so that it has this target head pose on average.
Accordingly, the augmented data sample is defined as:

haug
t = EA

(
R(htarget)R

T (ĥ)R(ht)
)

laugt = R(htarget)R
T (ĥ)(lt − pt) + pt

gaugt = EAsc

(
R(htarget)R

T (ĥ)gut

)
5
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Fig. 3: Visual examples of Geom-DA.

where ĥ denotes the mean of the head pose Euler angles of
all T frames of the data sample, and gut expresses gt as a
unit-vector. Fig. 3 depicts visual examples of Geom-DA.
TS-DA. To perform data augmentation in the temporal do-
main, we followed the typical approach of [30] by defining a
set of transformations involving jittering, scaling, magnitude
warping, and time warping. It should bring diversity like
inter-person gesture variation or noise in the extraction.
These transformations are applied sequentially with different
probabilities (see Sec. 4 in sup. materials).
Mixup-DA. Mixup [7] is a popular data augmentation tech-
nique in the visual domain. The main idea behind Mixup is
to linearly combine pairs of examples and their labels from
the training data to create new synthetic examples. Mixup-
DA randomly selects two training examples and linearly
interpolate their input representation, alongside their labels
to yield a new synthetic example. The intuition is that this
can encourage the model to learn more generalizable features
that are robust to small structured variations in the input.

D. Gesture Classification
Several deep network architectures have been investigated

as classifier Cθ to process the input representation I and
predict the gesture class ŷ. In all cases, we assumed the
availability of a labeled dataset D = {vi, yi}, and trained
the classifier by minimizing the following loss:

L =
1

N

N∑
i=1

ℓ(Cθ(Ii), yi) (4)

where ℓ is the cross entropy loss. In all cases, our classifier
comprised an encoder and a classifier head consisting of
linear layer taking the embedding produced by the encoder
and appling the Softmax function to output the gesture class.
The following architectures were used as encoders.
CNN. 1D Convolutional Neural Networks is a prevalent
choice for time-series classification, obtaining impressive
results across numerous multivariate time-series bench-
marks [8]. Our configuration closely follows the specifi-
cations outlined in [31], with the exception of using 128
channels in all three layers.
RNN. Recurent Neural Network has been an adequate choice
for time-series modeling due to its capacity to leverage the
dynamical characteristics of the data [28]. Here we evaluated
both Gated Recurrent Unit (GRU) [3] and bidirectional Long
Short-Term Memory (LSTM) [3], [6], [27] which enables
modeling longer temporal dependencies. We rely on standard
architectures with two layers and a hidden dimension of 64.
TCN. Temporal Convolutional Network (TCN) received sig-
nificant attention in time-series modeling [4], [16], [17]. It is

a 1D-CNN variant with a better ability to capture temporal
patterns and model long-range dependencies with a minimal
number of parameters (hence avoiding overfitting) thanks to
the use of kernel dilation. Our implementation follows the
Single-Stage TCN model proposed in [4]: we incorporate
four layers to achieve a receptive field of r = 24+1−1 = 31,
which proves sufficient for our temporal input size.

V. EXPERIMENTS

A. Evaluation Protocol

Datasets: We experiment using CCDb-HG and KTH-
Idiap [23]. CCDb-HG features dyadic sessions with mainly
frontal views, while the KTH-Idiap dataset features groups
of four persons discussing around a table, so that looking at
others involves more head motion. We divide the CCDb-HG
dataset into train and test sets based on subject-level splitting,
with four subjects (S2, S5, S20, and S10) assigned to the test
set, comprising 25 videos out of the total 115 videos. KTH-
Idiap comprises 9 videos (one per subject), necessitating
leave-one-person cross-validation for evaluation. The original
version of this dataset exclusively includes the Nod class.
Consequently, we re-annotated KTH-Idiap dataset using the
same procedure as in CCDb-HG, outlined in Section III-C.
Metrics and statistical tests: Performance is evaluated with
frame-based and event-based F1 scores (see Sec. 3 in sup.
materials). We report micro (overall) and macro (average
class) measures. Due to the class imbalance, minority class
improvements stand out more in macro. For the main table
highlighting our contributions (Tab. VI and Tab. VII), we
report the mean and standard deviation of 5 runs. To evaluate
the significance of differences between methods, we perform
a one-sided T-tests, with the null hypothesis assuming dif-
ferences due to randomness. In section V-C, we report the
significance level with ∗ and ∗∗ for p-value below 0.05 and
0.01 respectively.

B. Implementation Details

Training Samples: We create samples from videos using
a 31-frame window, with the central frame determining the
label. To avoid noisy samples, we exclude 7 frames before
and after a gesture’s onset and offset, similar to [2]. Negative
samples are taken from non-gesture windows with a 7-frame
gap between them to reduce redundancy. This process yields
180,568 samples for CCDb-HG, 53% being non-gesture.
Input Normalization: Input normalization involves subtract-
ing the per-sample channel-wise mean and dividing by the
standard deviation computed from all samples.
Training Details: CNN models are trained for 30 epochs
using the Adam optimizer with a 0.0005 learning rate, 0.0001
weight decay, and cosine decay scheduler, utilizing a batch
size of 128. To address class imbalance, predominantly from
the None class, we employ a focal loss with a gamma of 1.0.
For selecting the best hyperparameters, a grid search was
performed on the learning rate, hidden dimension, filter size,
and loss. The best parameter over a 3-fold cross-validation
on the training split has been selected.
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Event-based F1 Frame-based F1
Input Representation Nod Shake Tilt Turn Up-Down All-Micro All-Macro Nod Shake Tilt Turn Up-Down All-Micro All-Macro

CCDb-HG
Head-Pose 0.53 0.64 0.47 0.50 0.10 0.52 0.45 0.47 0.59 0.38 0.46 0.08 0.47 0.40
Landmarks 0.78 0.65 0.52 0.53 0.23 0.68 0.54 0.74 0.64 0.43 0.48 0.12 0.67 0.48
Head-Pose + Landmarks 0.77 0.72 0.55 0.51 0.20 0.68 0.55 0.74 0.68 0.46 0.48 0.13 0.68 0.50
Head-Pose + Gaze 0.54 0.61 0.44 0.59 0.15 0.53 0.47 0.49 0.57 0.37 0.57 0.12 0.49 0.42
Landmarks + Gaze 0.78 0.72 0.46 0.62 0.18 0.68 0.55 0.74 0.68 0.41 0.59 0.11 0.68 0.51
Landmarks + Head-Pose + Gaze 0.78 0.70 0.52 0.65 0.10 0.69 0.55 0.74 0.68 0.45 0.59 0.04 0.68 0.50
Random classifier - - - - - - - 0.15 0.06 0.03 0.03 0.02 0.07 0.06

CCDb-HG → KTH-Idiap
Head-Pose 0.44 0.36 0.35 0.72 0.15 0.50 0.40 0.47 0.32 0.29 0.64 0.15 0.49 0.37
Landmarks 0.64 0.41 0.31 0.74 0.06 0.62 0.43 0.65 0.40 0.26 0.65 0.05 0.58 0.40
Head-Pose + Landmarks 0.64 0.47 0.38 0.75 0.06 0.63 0.46 0.66 0.43 0.34 0.67 0.06 0.60 0.43
Head-Pose + Gaze 0.53 0.22 0.29 0.76 0.28 0.52 0.41 0.52 0.23 0.22 0.66 0.19 0.48 0.36
Landmarks + Gaze 0.67 0.51 0.38 0.80 0.11 0.67 0.49 0.64 0.43 0.28 0.70 0.10 0.61 0.43
Landmarks + Head-Pose + Gaze 0.63 0.54 0.38 0.78 0.06 0.65 0.48 0.64 0.47 0.32 0.69 0.05 0.61 0.44
Random classifier - - - - - - - 0.12 0.03 0.02 0.10 0.02 0.07 0.06

TABLE III: Impact of the input modalities when training on the CCDb-HG dataset. Invariance is employed as input
representation. Results when training on KTH-Idiap dataset are in appendix.

Event-based F1 Frame-based F1
Im KTH-Idiap CCDb-HG KTH-Idiap CCDb-HG

Trained on CCDb-HG
Baseline Abs 0.59 0.68 0.56 0.68
Baseline + Geom-DA Abs 0.63 0.69 0.60 0.68
Baseline Rel 0.57 0.69 0.51 0.67
Baseline + Geom-DA Rel 0.65 0.67 0.60 0.68
Baseline + Invariance Inv 0.65 0.69 0.61 0.68

Trained on KTH-Idiap
Baseline Abs 0.62 0.48 0.60 0.48
Baseline + Geom-DA Abs 0.61 0.56 0.61 0.55
Baseline Rel 0.67 0.56 0.65 0.56
Baseline + Geom-DA Rel 0.67 0.60 0.64 0.61
Baseline + Invariance Inv 0.68 0.60 0.65 0.59

TABLE IV: Viewpoint invariance (Geom-DA, Invariance).
Event-based F1 Frame-based F1

KTH-Idiap CCDb-HG KTH-Idiap CCDb-HG

Trained on CCDb-HG
Invariance 0.65 0.69 0.61 0.68
Invariance + TS-DA 0.63 0.70 0.59 0.68
Invariance + Mixup-DA 0.64 0.69 0.60 0.67
Invariance + TS-DA + Mixup-DA 0.64 0.68 0.61 0.66

Trained on KTH-Idiap
Invariance 0.68 0.60 0.65 0.59
Invariance + TS-DA 0.67 0.62 0.66 0.61
Invariance + Mixup-DA 0.67 0.55 0.64 0.51
Invariance + TS-DA + Mixup-DA 0.68 0.57 0.65 0.54

TABLE V: Results of temporal data augmentation.

C. Results

Effectiveness of different input cues and gaze as an
auxiliary cue. Results based on various input modalities
are given in Tab. III. They show that landmarks outperform
head-pose, exhibiting a significant 24% relative increase in
micro-events F1 and a 10% in macro-events F1, observed in
both within- and cross-dataset evaluations. Similar findings
are obtained for models trained on KTH-Idiap (see Tab. C in
sup. materials). This superiority is attributed to the accuracy
of landmarks in providing implicit orientation as well as fine
grained dynamic head motion signals.

Regarding gaze, we can notice that using all modalities
improves generalization performance from CCDb-HG to
KTH-Idiap, with a 4% relative gain in micro- and macro-
event F1 compared to using only landmarks and head-pose.
More generally, we can see that the addition of gaze to any
other modality combination consistently enhances macro-
event metrics, with a relative increase of up to 4% within and
up to 13% in cross-dataset experiments. Per-class analysis
reveals that the benefits of gaze lie mainly in improving

Turn and Shake gesture recognitionfor models trained on
CCDb-HG, and Turn and Up/Down for models trained on
KTH-Idiap (see Table C in sup. materials), whereas the
performance on nods and tilt tend to remain the same. which
can be due to the distinctive role that gaze plays in these
gestures. For instance, we can note from the event confusion
matrix (Fig. B in sup. materials) on CCDb-HG that the gaze
cue allows to disambiguate between Turn and Shake gestures.
Abs and Rel input representation. The baseline in Tab. IV
sheds light on the need for relative (Rel) input representation
vs simpler absolute measures (Abs). In low-data regimes like
KTH-Idiap, Rel features are more effective, confirming re-
sults obtained in previous studies favoring Rel variants [20]–
[22], [24], [25], [27]. However, when trained on CCDb-HG,
the performance are similar when tested on CCDb-HG, and
surprisingly even slightly better on KTH-Idiap despite the
larger variability in head orientation compared to the CCDb-
HG training data. Additionally, combined with Geom-DA
technique, the Abs representation yiels comparable perfor-
mance to Rel + Geom-DA, suggesting that using absolute
representation measures could potentially be sufficient when
having enough training data, removing the need for designing
specialized features like dynamics.
Viewpoint invariance. Tab. IV further provides a com-
parative analysis of two methods for achieving viewpoint
invariance, either through data augmentation (Geom-DA),
or through invariant feature computation (Invariance, Inv).
First, the Table highlights the sensitivity of simple Abs and
Rel features to viewpoint changes. Secondly, it shows that
both Geom-DA and Invariance methods significantly enhance
generalization performance in cross-dataset settings, with a
relative increase of up to 14% and 20% in event-based and
frame-based scenarios, respectively. Furthermore, it shows in
both cases that models trained on KTH-Idiap and tested on
CCDb-HG exhibit a significant performance drop compared
to models trained and tested on CCDb-HG (0.60 vs round
0.69 event-F1), whereas models trained on CCDb-HG and
tested on KTH-Idiap achieve an F1 score of 0.65, closely
matching the performance of models trained and tested on
KTH-Idiap (0.68). This highlights the stronger generalization
capacity of our larger scale CCDb-HG annotation.
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Micro Event F1 Micro Frame F1 Macro Event F1 Macro Frame F1
Trained on CCDb-HG KTH-Idiap CCDb-HG KTH-Idiap CCDb-HG KTH-Idiap CCDb-HG KTH-Idiap CCDb-HG

Paggio et al. [25]† 0.32 (0.011) 0.50 (0.008) 0.35 (0.011) 0.53 (0.006) 0.15 (0.004) 0.22 (0.004) 0.16 (0.002) 0.21 (0.003)
Otsuka et al. [24]† 0.47 (0.006) 0.53 (0.007) 0.47 (0.007) 0.52 (0.002) 0.35 (0.009) 0.45 (0.013) 0.31 (0.005) 0.41 (0.006)
GRU + Gaze + Invariance 0.58 (0.002) 0.69 (0.005) 0.55 (0.005) 0.68 (0.006) 0.42 (0.015) 0.55 (0.007) 0.38 (0.010) 0.50 (0.004)
LSTM + Gaze + Invariance 0.57 (0.009) 0.69 (0.009) 0.55 (0.008) 0.69 (0.007) 0.42 (0.017) 0.57 (0.021) 0.39 (0.013) 0.52 (0.014)
TCN + Gaze + Invariance 0.61 (0.007) 0.71 (0.005) 0.58 (0.005) 0.71 (0.003) 0.47 (0.011) 0.61 (0.005) 0.42 (0.007) 0.56 (0.003)
CNN + Gaze + Invariance 0.65 (0.018) 0.69 (0.011) 0.60 (0.010) 0.68 (0.008) 0.48 (0.020) 0.56 (0.010) 0.43 (0.009) 0.51 (0.009)

TABLE VI: Comparison with state-of-the-art methods and investigation of various deep learning models trained on CCDb-
HG, including both within-dataset and cross-dataset evaluations. † Our re-implementation. Results are the average over 5
runs and standard deviation are given in parenthesis.

Micro Event F1 Micro Frame F1 Macro Event F1 Macro Frame F1
Trained on CCDb-HG Gaze Invariance KTH-Idiap CCDb-HG KTH-Idiap CCDb-HG KTH-Idiap CCDb-HG KTH-Idiap CCDb-HG

CNN ✗ ✗ 0.53 (0.024) 0.67 (0.005) 0.50 (0.013) 0.67 (0.003) 0.38 (0.014) 0.52 (0.006) 0.34 (0.010) 0.48 (0.006)
CNN ✓ ✗ 0.59 (0.017) 0.69 (0.007) 0.54 (0.009) 0.67 (0.007) 0.42 (0.023) 0.55 (0.015) 0.37 (0.013) 0.50 (0.010)
CNN ✗ ✓ 0.63 (0.006) 0.68 (0.002) 0.59 (0.005) 0.67 (0.003) 0.46 (0.010) 0.53 (0.010) 0.42 (0.004) 0.49 (0.008)
CNN ✓ ✓ 0.65 (0.018) 0.69 (0.011) 0.60 (0.010) 0.68 (0.008) 0.48 (0.020) 0.56 (0.010) 0.43 (0.009) 0.51 (0.009)

TABLE VII: Ablation study evaluating the impact of using Gaze as an auxiliary modality and using viewpoint invariance
representation. The baseline is Head-Pose + Landmarks, and in the absence of Invariance, the representation defaults to Rel.
Results are the average over 5 runs and standard deviation are given in parenthesis.

Temporal Data augmentation. Tab. V shows empirical
findings on using TS-DA and Mixup-DA temporal augmen-
tation techniques for robustness enhancement. Unfortunately,
we see that these techniques do not increase recognition,
potentially indicating that on our application and datasets,
adding temporal noise and fluctuations does not help, either
because such noise might already be present in the data,
or because it forces the model to detect unwanted signals,
leading to the detection of false positives in the real samples.
State of the art (SoA) and recognition models. Table VI,
presents a comparison with SoA methods and investigates
the effectiveness of various models, including RNN-based
architectures (GRU, and LSTM), as well as CNN-based
architectures (CNN, and TCN). We can note that our models
consistently beats the SoA performance. This outstanding
performance primarily originates from the use of additional
modalities beyond Head-Pose, such as Landmarks and Gaze,
improved input representation (e.g., Invariance), and higher
capacity models.

Regarding models, CNN-based architectures outperform
RNN-based ones. More specifically, CNN and TCN have
superior cross-dataset generalization performance on KTH-
Idiap, e.g. with Micro-F1 scores of 0.65 and 0.61 respec-
tively, compared to 0.58 and 0.57 for GRU and LSTM. In
within CCDb-HG dataset evaluation, RNN architectures are
closer in performance, as these model may benefit more
from the larger amount of training data. Nevertheless TCN
exhibits superior performance over other models, achieving
event-based F1 scores of 0.71 (Micro) and 0.61 (Macro),
potentially due to its better ability at modeling longer-range
temporal dependencies.
Ablation study. The ablation study in Table VII, evaluates
the key contributions of our work: the incorporation of
gaze as an auxiliary modality and the use of viewpoint
invariance representation. When evaluated on CCDb-HG,
introducing gaze results in a statistically significant relative
increase of 4%∗∗ in macro F1 and 3%∗ in micro event
F1. Cross-evaluation on KTH yields similar results (relative

increase ranging from 8%∗∗ to 13%∗∗). While Invariance
does not show improvement within the dataset, as expected, it
contributes to enhanced generalization in cross-dataset condi-
tions, exhibiting a significant relative increase from 18%∗∗ to
23%∗∗. Simultaneously considering both components results
in a slight boost in overall performance. This underscores
the advantages of gaze and Invariance in enhancing robust
HGR across diverse recording and evaluation scenarios.
Limitations. Our proposed method fails to recognize very
subtle gestures and out-of-distribution dynamics like fast
nodding. Furthermore, the continuous nature of the head
pose creates borderline cases such as tilt/nod happening
simultaneously, this challenge arises both in annotation and
modeling. Body movements, facial expressions, talking, and
laughing are also sources of false positives emphasizing the
need for further exploration. See supplementary material for
a comprehensive discussion and visual examples.

VI. CONCLUSION
In this work, we introduced CCDb-HG, a novel annotation

extension for the CCDb conversational dataset, enriching
it with diverse head gesture classes and showing that due
to its scale, trained model on CCDb-HG offers superior
generalization performance compared to models trained with
smaller datasets. We also conducted investigations into the
most effective input cues, uncovering the positive impact
of gaze as an auxiliary cue, particularly in disambiguating
specific gestures and improving representation robustness.
We proposed two distinct approaches for achieving view-
point invariance, showcasing Invariance as an effective ap-
proach. Furthermore, while previous research mainly favored
relative input representations, we provided evidence that
absolute measures, paired with proper data augmentation
techniques like Geom-DA and leveraging large-scale datasets
like CCDb-HG offer comparable results, reducing the need
for hand-crafted features. Finally, we explored various recog-
nition models to establish baseline performance on CCDb-
HG, contributing valuable insights regarding head gesture
recognition. By releasing our annotations, evaluation code,
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and models, we aim to foster reproducibility and stimulate
further advancements in non-verbal behavior analysis, for
instance to explore other cue fusion strategies or by investi-
gating end-to-end models relying on streams of face images.
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Supplementary Materials

I. FURTHER DETAILS OF ANNOTATIONS

Two annotators independently labeled videos from the
CCDb dataset using specified head gesture categories. Each
annotator worked on 50 videos and evaluated 15 common
videos to gauge inter-annotator agreement. Analysis of the
inter-annotator confusion matrix in Fig. 1 indicated disagree-
ments primarily in subtle instances mislead with None, not
between different gestures. However, the Waggle category
showed notable confusion with Shake, Tilt, and None, at
events and frame. Due to low agreement and potential ambi-
guity, we opted to exclude the Waggle category from subse-
quent experiments, acknowledging its limited representation
in the dataset. Otherwise, we can see that the agreement is
relatively high among the other classes, in Fig. 1b, we can
see that Up/Down might be misleading with nod, which is
logical since the only difference is the gaze behavior.

II. ADDITIONAL EXPERIMENTS AND RESULTS

Ablation study. Tab. I presents the ablation study conducted
on KTH-Idiap to further assess the primary contributions
of this work, which include the incorporation of gaze as
an auxiliary modality and the utilization of Invariance as
the preferred approach for achieving viewpoint invariance in
HGR. When considered independently, they both improve
performance, but the results clearly indicate that the most
optimal performances are achieved when both gaze and In-
variance are employed simultaneously. Specifically, in cross-
dataset settings, we observe notable relative increases of up
to 7% at the Micro-level and 15% at the Macro-level when
trained on KTH-Idiap and evaluated on CCDb-HG.
Comparison to state of the art on KTH-Idiap. Tab. II
provides an extension of the evaluation for various models
trained on KTH-Idiap, yielding similar observations as in
Tab.VI of the main submission. Notably, our results consis-
tently surpass state-of-the-art models, showcasing the posi-
tive impact of incorporating gaze and leveraging Invariance.
While LSTM exhibits comparatively lower performance, the
results for TCN and CNN are closely aligned. In our findings,
it becomes challenging to distinctly favor one over the other;
when one model outperforms in a specific metric, the other
excels elsewhere. When trained on KTH-Idiap, both TCN
and CNN demonstrate comparable and potentially suitable
performances for HGR.
Confusion matrices: gaze vs. w/o gaze. To further quantify
the impact of gaze, we compute the difference between
the confusion matrices of the model trained with all cues
(Head-Pose + Landmarks + Gaze) and the same model
trained with Head-Pose + Landmarks cues, as presented in
Fig. 2 and Fig. 3. In this analysis, positive values along
the diagonal and negative off-diagonal values indicate gaze’s
positive contributions. From examining the within CCDb-HG

(a) Event confusion matrix corresponding to the average between
two annotators. Values correspond to the count and the color to the
percentage normalized by row.

(b) Frame confusion matrix corresponding to the average between
two annotators. Values and colors correspond to the percentage
normalized by row. Note that we remove the number of None-
None before normalization for visualization purposes.
Fig. 1: Event and frame confusion matrix between two
annotators over 15 randomly selected videos.

differences 1 (Fig. 2), it is evident that gaze significantly aids
in disambiguating Turn and Shake gestures. However, there
is a smaller degradation in confusion related to Nod with
Up/Down and None, as well as Tilt. For cross-dataset evalu-
ation from CCDb-HG to KTH-Idiap (Fig. 3), the presence of
positive values on the diagonal as well as negative values in
the ”None” column suggests that incorporating gaze results
in improving accuracy and fewer false positives.
Effectiveness of different input cues and gaze as an
auxiliary cue, on KTH-Idiap dataset. Tab. III presents the
investigation results of various input cues and gaze as an aux-
iliary cue on KTH-Idiap. Consistent with main submission
findings, landmarks significantly outperform head-pose, with
up to 9% and 23% relative increases in within-dataset and

1Note that the raw differences must be compared to the amount of
observed events, which have different orders of magnitude (Nod: 535,
Shake: 159, Tilt: 123, Turn: 126, Up/Down: 62 in the CCDb-HG test set,
and Nod: 194, Shake: 42, Turn: 216, Tilt: 29, Up/Down: 32 in KTH-Idiap).
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Micro Event F1 Micro Frame F1 Macro Event F1 Macro Frame F1
Trained on KTH-Idiap Gaze Invariance KTH-Idiap CCDb-HG KTH-Idiap CCDb-HG KTH-Idiap CCDb-HG KTH-Idiap CCDb-HG

CNN ✗ ✗ 0.66 0.56 0.63 0.57 0.47 0.40 0.42 0.35
CNN ✓ ✗ 0.67 0.56 0.65 0.56 0.51 0.39 0.45 0.33
CNN ✗ ✓ 0.65 0.59 0.63 0.59 0.48 0.43 0.41 0.38
CNN ✓ ✓ 0.68 0.60 0.65 0.59 0.51 0.46 0.45 0.41

TABLE I: Ablation study showcasing the impact of incorporating Gaze as an auxiliary modality and using Invariance for
viewpoint invariance in KTH-Idiap. The baseline modality (without gaze) is Head-Pose + Landmarks, and in the absence
of Invariance, the representation defaults to Rel.

Micro Event F1 Micro Frame F1 Macro Event F1 Macro Frame F1
Trained on KTH-Idiap KTH-Idiap CCDb-HG KTH-Idiap CCDb-HG KTH-Idiap CCDb-HG KTH-Idiap CCDb-HG

Paggio et al. [25]† 0.42 0.36 0.32 0.33 0.19 0.15 0.15 0.13
Otsuka et al. [24]† 0.59 0.48 0.56 0.44 0.42 0.40 0.38 0.33
LSTM + Gaze + Invariance 0.60 0.56 0.60 0.54 0.44 0.41 0.38 0.36
TCN + Gaze + Invariance 0.67 0.61 0.64 0.61 0.52 0.48 0.46 0.42
CNN + Gaze + Invariance 0.68 0.60 0.65 0.59 0.51 0.46 0.45 0.41

TABLE II: Comparison with state-of-the-art methods and investigation of various deep learning models for HGR on KTH-
Idiap datasets, including both within-dataset and cross-dataset evaluations. † Our re-implementation.

Event-based F1 Frame-based F1
Input Representation Nod Shake Tilt Turn Up-Down All-Micro All-Macro Nod Shake Tilt Turn Up-Down All-Micro All-Macro

KTH-Idiap
Head-Pose 0.58 0.34 0.36 0.76 0.19 0.59 0.44 0.59 0.28 0.27 0.67 0.13 0.57 0.39
Landmarks 0.72 0.36 0.29 0.74 0.11 0.64 0.45 0.73 0.29 0.23 0.65 0.09 0.62 0.40
Head-Pose + Landmarks 0.71 0.40 0.36 0.76 0.18 0.65 0.48 0.73 0.30 0.23 0.66 0.13 0.63 0.41
Head-Pose + Gaze 0.54 0.34 0.30 0.78 0.17 0.58 0.42 0.55 0.27 0.23 0.69 0.14 0.55 0.38
Landmarks + Gaze 0.71 0.37 0.34 0.79 0.31 0.67 0.50 0.73 0.29 0.28 0.69 0.24 0.65 0.45
Landmarks + Head-Pose + Gaze 0.71 0.41 0.30 0.80 0.32 0.68 0.51 0.73 0.31 0.22 0.69 0.29 0.65 0.45

KTH-Idiap → CCDb-HG
Head-Pose 0.55 0.58 0.47 0.44 0.15 0.51 0.44 0.51 0.54 0.41 0.41 0.10 0.48 0.39
Landmarks 0.72 0.52 0.27 0.48 0.15 0.59 0.43 0.69 0.44 0.24 0.39 0.09 0.59 0.37
Head-Pose + Landmarks 0.73 0.57 0.28 0.44 0.14 0.59 0.43 0.70 0.49 0.25 0.38 0.09 0.59 0.38
Head-Pose + Gaze 0.56 0.43 0.35 0.57 0.27 0.51 0.43 0.48 0.34 0.28 0.49 0.20 0.44 0.36
Landmarks + Gaze 0.72 0.50 0.29 0.53 0.30 0.60 0.47 0.67 0.37 0.25 0.47 0.21 0.57 0.39
Landmarks + Head-Pose + Gaze 0.72 0.53 0.31 0.50 0.24 0.60 0.46 0.69 0.44 0.29 0.46 0.18 0.59 0.41

TABLE III: Exploration of diverse combinations of input modalities, incorporating gaze as an auxiliary modality, on the
KTH-Idiap dataset. The Invariance variant is employed for input representation.

cross-dataset evaluations, respectively. Using all modalities
enhances generalization performance, showing an 8% rela-
tive gain from KTH-Idiap to CCDb-HG compared to using
only landmarks and head-pose, leading to a robust repre-
sentation of head dynamics. Adding gaze to Landmarks and
Head-Pose + Landmarks also consistently improves macro-
event metrics, with up to 13% and 9% relative increase
in within and cross-dataset evaluations, respectively. Gaze
notably aids in recognizing Turn and Up/Down categories
within the KTH-Idiap dataset.

Qualitative results of gaze inclusion. The efficacy of gaze
in enhancing recognition was shown through its ability to
disambiguate between turn and shake gestures. This point is
illustrated in Fig. 6. In the first example (first two rows), it
is evident that gaze played a crucial role in distinguishing
between a turn and a shake. The gaze remained fixed during
side-to-side head movement, characteristic of a shake, as op-
posed to a turn. Conversely, in the second example (last two
rows), a side head movement accompanied by a gaze shift
indicated a turn amidst two shake gestures. Once again, the
incorporation of gaze proved instrumental in disambiguating
these distinct gestures.

Limitations. Visual inspection of model prediction on the

test set exposes certain limitations in the model’s perfor-
mance. Notably, we observe that subtle gestures are hard to
recognize by the model which translates to false positives.
While increasing the decision threshold reduces the number
of false negatives, it also increases the number of false
positives impacting the prediction quality. Additionally, the
recognition accuracy diminishes for out-of-distribution head
gesture dynamics, particularly fast nodding. We notice that
the continuous nature of the head pose presents a challenge
to discretizing head gestures into distinct classes. Qualitative
examples illustrating these shortcomings are presented in
Fig. 7. For instance, the first three rows illustrate confusion
with a tilt gesture. In each case, there is a sideways rotation
along the roll axis indicative of a tilt; however, the model
predicts a nod in the first row, a turn in the second row,
and a shake in the third row. It is important to note that
neither the annotation nor prediction is inherently incorrect,
and these instances could be characterized as borderline cases
or limitations of the class definition as seen in the inter-
annotator agreement in Fig. 1. In the last row of the same
figure, four examples of correct predictions are presented
where the model’s confidence was not sufficient, resulting
in shorter predicted durations compared to the actual ground
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Fig. 2: Difference between the confusion matrix of the model
trained with all cues (Head-Pose+Landmarks+Gaze) and the
model trained with (Head-Pose+Landmarks) on the CCDB-
HG dataset. Positive values on the diagonal, as well as
negative values on the off-diagonal, indicate the positive
impact of the gaze cue. Similarly, negative values in the
”None” column indicate a positive effect due to a reduction
of false alarms for the corresponding row.

truth. In cases of insufficient overlapping, these events are
counted as errors. Additionally, false positives may occur
when body movement caused by repositioning or laughing
induces head motion interpreted by the model as head ges-
tures. Facial movements, such as expressions or talking, can
also influence landmark dynamics, leading to false positive
predictions.
Camera-relative gaze vs. head-relative gaze. Gaze di-
rection can be represented in different coordinate systems
like the camera and head coordinate systems. Although
gaze in the head coordinate system is naturally invariant
to the viewpoint, making it a theoretically advantageous
representation, its effective use requires accurate head pose
estimation to convert gaze from camera coordinates. Our
empirical comparison in Tab. IV reveals that gaze in cam-
era coordinates outperforms that in head coordinates. This
discrepancy may result from the noisy head pose estimator
used, affecting the accurate representation of gaze in the head
coordinate system.

III. DETAILS OF EVALUATION PROTOCOL

Evaluation on CCDb-HG is based on a fixed test set
including 4 subjects and 25 videos. It avoids repetitive train-
ing, allowing future work to use larger end-to-end models.
Regarding the nature of KTH-Idiap data, leave-one-person
cross-validation is performed for all the experiments. The
model is trained with samples from all the videos except from
one person and the model is evaluated on all the videos from
the excluded person. For each video in the test set, the model
is applied to each frame. Following the evaluation protocol
from [2], the performance of the model is measured at two
different levels:
Frame-based describes well the sensitivity of the model

Fig. 3: Difference between the confusion matrix of the model
trained with all cues (Head-Pose+Landmarks+Gaze) and the
model trained with (Head-Pose+Landmarks) for CCDb-HG
→ KTH-Idiap. Positive values on the diagonal, as well as
negative values on the off-diagonal, indicate the positive
impact of the gaze cue. Similarly, negative values in the
”None” column indicate a positive effect due to a reduction
of false alarms for the corresponding row.

prediction. It uses the standard precision, recall, and F1 score
measures.
Event-based describes well the gesture detection capability
of the model. Suppose egti is a ground truth event in the
time interval Igti and edj is a detected event of the same class
in the time interval Idj . Then, the event matching precision,
recall, and F-score between egti and edj is:

Pi,j =
|Igti ∩ Idj |

|Igti |
, Ri,j =

|Igti ∩ Idj |
|Idj |

, Fi,j =
2Pi,jRi,j

Pi,j +Ri,j

(1)
Two events match if the F score is above a threshold. In the
case of long head gesture, it is hard for the predicted event
to be as long as the ground truth thus the threshold is set as
0.1 in order to handle such situations. Finally, given matched
events, we can compute event precision, recall, and F-score
as follows:

Pevent =
#{edj | ∃i, Fi,j > threshold}

#ed

Revent =
#{egti | ∃j, Fi,j > threshold}

#egt

Fevent =
2PeventRevent

Pevent +Revent

Moreover, before computing the evaluation metrics we
perform a label smoothing on each predicted video. It
consists of a majority vote on a 15 frames window. Thus, it
aggregates two similar events that are less than 7 frames
apart and it deletes events that are less than 7 frames.
Additionally, for the frame-based measure, four frames at
the edge of ground truth events are not taken into account.
In fact, boundary annotations lack precision thus we don’t
want this to be reflected in the performance measures.
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Micro Event F1 Micro Frame F1 Macro Event F1 Macro Frame F1
Gaze ref KTH-Idiap CCDb-HG KTH-Idiap CCDb-HG KTH-Idiap CCDb-HG KTH-Idiap CCDb-HG

Trained on CCDb-HG
Head-Pose + Landmarks - 0.63 0.68 0.60 0.68 0.46 0.55 0.43 0.50
Head-Pose + Landmarks + Gaze head 0.63 0.68 0.58 0.67 0.47 0.56 0.41 0.51
Head-Pose + Landmarks + Gaze camera 0.65 0.69 0.61 0.68 0.48 0.55 0.44 0.50

Trained on KTH-Idiap
Head-Pose + Landmarks - 0.65 0.59 0.63 0.59 0.48 0.43 0.41 0.38
Head-Pose + Landmarks + Gaze head 0.67 0.59 0.63 0.58 0.49 0.43 0.42 0.38
Head-Pose + Landmarks + Gaze camera 0.68 0.60 0.65 0.59 0.51 0.46 0.45 0.41

TABLE IV: Ablation study comparing Gaze in head coordinates vs. camera coordinates, with Invariance as input
representation. Baseline modality is Head-Pose + Landmarks (w/o gaze).

Fig. 4: Examples of the four different time series data aug-
mentation including Jittering, Scaling, Magnitude Warping,
and Time Warping applied to a channel of a relative sample.

IV. FURTHER DETAILS OF DATA AUGMENTATION

In this work, a series of data transformations are applied,
encompassing jittering (p = 0.5), scaling (p = 0.66),
magnitude warping (p = 0.33), and time warping (p = 0.3),
where p signifies the probability of applying each transfor-
mation. Jittering involves adding random noise sampled from
a normal distribution with a mean of zero and a standard
deviation (std) of 0.05. Scaling is executed in two mutually
exclusive manners: either by multiplying the time-series with
a random scalar drawn from a normal distribution with a
mean of 0.2 and a std of 1.0, or through magnitude warping
utilizing four knots with a std of 0.2. Additionally, time
warping is incorporated, involving two knots with a std of
0.1.

V. DETAILS OF MODELS

Each of the implemented models consists of an encoder
CNN, LSTM, or TCN. Then, we used an average pool
across time followed by a linear head that classifies the head
gestures.
CNN. In this work, our configuration closely follows the

Timeline

 Past  Current  Future

 Prediction

Ground truth

Fig. 5: Diagram presenting the plots in each frame in Fig. 6
and Fig. 7. At the bottom of each frame, color curves
represent the event labels over time (120 frames), Nod
(Green), Shake (orange), Tilt (light green), Turn (blue), and
Up Down (purple). Dash lines are ground truth and solid
lines are predictions. The three vertical white dash lines are
respectively past, current, and future which represent the
input time windows used to predict head gestures.

specifications outlined in [31]. It consists of 3 convolutional
layers with kernel sizes ranging from 8,5 and 3 with a stride
of 1. We used 128 channels in all three layers. In addition,
we used a dropout layer after the two first layers.
RNN. In our LSTM implementation, we adopt a conven-
tional stacked bidirectional LSTM (BiLSTM) architecture,
consisting of two layers with a hidden dimension set to 64.
At each time step, we extract the hidden representation from
the last layer, which is the concatenation of both directions
in the LSTM. A similar design for GRU is employed without
bidirectional modeling.
TCN. In our implementation of the Temporal Convolutional
Network (TCN), we adhere to the Single-Stage TCN model
introduced in [4]. Initially, we employ a 1x1 convolutional
layer in 1D to project each time step into 128 hidden
dimensions. Subsequently, we stack four dilated residual
layers, following the structure outlined in [4]. These layers
utilize 1D convolutional layers with a kernel size of 3, and
the dilation rate increases progressively from 1, 2, 4, to 8.

13



ga
ze

w
/o

 g
az

e
ga

ze
w

/o
 g

az
e

Fig. 6: Comparison of results with and without (w/o) gaze. A diagram in Fig. 5 gives a comprehensive understanding of the
plots in each frame. The first two rows show a ground truth shake, where the gaze can disambiguate a turn with a shake.
The last two rows focus on a ground truth turn, where including gaze helped to recognize the turn. We can notice that in
both cases the gaze is a relevant cue to disambiguate gestures.
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Fig. 7: Error predictions from a CNN model using head pose, landmarks, and gaze. A diagram in Fig. 5 gives a comprehensive
understanding of the plots in each frame. The first three rows show predicted events confused with a ground truth tilt. The
last row shows four misalignments where prediction events are correct but the overlap with the ground truth is too small.
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