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Abstract—While shared autonomy offers significant poten-
tial for assistive robotics, key questions remain about how to
effectively map 2D control inputs to 6D robot motions. An
intuitive framework should allow users to input commands
effortlessly, with the robot responding as expected, without users
needing to anticipate the impact of their inputs. In this article,
we propose a dynamic input mapping framework that links
joystick movements to motions on control frames defined along a
trajectory encoded with canal surfaces. We evaluate our method
in a user study with 20 participants, demonstrating that our
input mapping framework reduces the workload and improves
usability compared to a baseline mapping with similar motion
encoding. To prepare for deployment in assistive scenarios, we
built on the development from the accessible gaming community
to select an accessible control interface. We then tested the system
in an exploratory study, where three wheelchair users controlled
the robot for both daily living activities and a creative painting
task, demonstrating its feasibility for users closer to our target
population.

Index Terms—Shared autonomy, human-robot interaction, as-
sistive robotics, accessibility

I. INTRODUCTION

Assistive robotics can be a valuable tool for enhancing the
independence of individuals with disabilities. However, despite
significant technological advances in this field, the adoption of
assistive robots in environments inhabited by humans remains
limited [1]. One key reason behind this lag in adoption is the
need for personalization of assistive robots. Each user has their
own personal needs and preferences that need to be followed
to ensure acceptance. A promising approach to providing this
personalized assistance is shared autonomy (SA) [2]–[4], a
control method that blends human and robot inputs. While
this method allows humans to maintain control of the robot’s
behavior, it can impose a high workload, as it typically relies
on 2D joysticks that users are familiar with (e.g., joysticks for
electric wheelchairs) to manage the 6 Cartesian dimensions
(3 for position and 3 for rotation) of the robots, which are
necessary to support various activities of daily living.

In this paper, we propose a novel input mapping frame-
work for our already existing geometric SA paradigm, called
GeoSACS [5], that uses canal surfaces to encode robot motions
[6]. We dedicated special effort to aligning user inputs from
2D control interfaces with the current location in the canal to
ensure intuitive and accurate interpretation of user commands
(see Figure 1). We evaluated our approach against a GeoSACS
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Fig. 1: In this shared autonomy framework, after two demon-
strations, the motion is encoded in a canal surface. While
the robot autonomously navigates within the canal, users can
provide corrections with a gamepad, aligned to the correction
axes on the canal’s cross sections to ensure intuitive mapping.

baseline in a comparative study with three activities: pick-and-
place, painting, and laundry loading, showing greater usability
and lower workload than the baseline.

Finally, as our method is intended to be used by users with
disabilities, we took inspiration from the “accessible gaming”
community to use an accessible gamepad designed for video
games and evaluated our approach in an exploratory study
with three wheelchairs users who completed the same tasks
as in the comparative study, demonstrating the feasibility of
our approach for wheelchair users.

Overall, our contributions are the following:

• A dynamic mapping framework, developed through pilot
studies, enabling an intuitive translation of user inputs
into the robot’s control space for aligned manipulation.

• A comparative study with 20 participants comparing our
method to the GeoSACS baseline, and demonstrating
lower workload and higher usability of our system.

• An accessibility exploratory study with three wheelchair
users, demonstrating the feasibility of this method for
users closer to our intended population.



II. RELATED WORK

Our work is situated in the field of assistive robotics [7],
which provides assistance through robotic agents to a diverse
range of people, including individuals with disabilities. This
assistance enhances autonomy by enabling users to perform
activities of daily living (ADLs) and become more independent
and expressive, while accommodating their unique needs and
preferences. Within this domain, various robot control meth-
ods exist, such as teleoperation (full manual control without
system assistance), shared autonomy (where the robot and
user collaborate), and full autonomy (where the system has
complete control and the user has none) [8]. SA [2], [3], [9],
[10] has gained significant traction in recent years due to its
balance of control: it allows users to retain authority while
enabling customization to their needs [11], all while offloading
the majority of the task to the robot [4].

A. Low-DoF to High-DoF Robot Control

One of the challenges of controlling robots in teleoperation
and SA is the dimensionality gap [3], [10], [12], [13]: robots
need to be controlled with six Cartesian dimensions, but
typical user interfaces such as joysticks already used for
electric wheelchairs only provide two degrees of freedom
(DoF) control. Prior work exploring methods for reducing the
dimensionality gap in robot teleoperation and SA has typically
relied on mode switching [14], [15] or predefined mappings
[16]. These methods create open challenges, including the
need for mental rotations [15], [17], the quality and quantity
of data required to generate control spaces [3], and the lack
of autonomous behaviors [18], leading to increased workload.

Within SA frameworks, previous work has enabled humans
to control robots through low-dimensional inputs [19], [20].
For example, Losey et al. [10] introduced a human-led SA
system that allows users to control a robot by navigating
along captured 2D latent dimensions. Similarly, Hagenow et
al. presented a corrective SA method [4] in which users issue
commands directly to three robot state variables using a 3-
DoF haptic device for robot controlling. GeoSACS [5] offers
a geometric method for mapping 2D joystick inputs onto the
disks of a canal [21], which represents the underlying structure
of a task, generated from just two demonstrations. While
GeoSACS present opportunities for more intuitive control,
these canals can have intricate bends, causing inconsisten-
cies in robot movements. Recognizing this, we build upon
GeoSACS to improve it and develop our mapping framework.

B. Control Frames

Even with SA systems that reduce the dimensionality gap,
intuitive control still requires user input mapping [22]. A key
design consideration in robot control is the frame of reference,
or control frame, from which users issue commands [23]. The
literature identifies several types of control frames, such as the
robot frame, view frame, and task frame, which can be used
to control robots [17]. In this work, we develop our mapping
framework based on the user’s view frame with the intention
to enable effortless control of the robot.

One challenge when controlling robots using the view frame
is that, if the viewpoint is not aligned with the robot or the
control frames of the method being used, users must put effort
to predict how their inputs will affect the robot’s movements,
often leading to mentally demanding rotations [17], [24],
[25]. Prior work has attempted to address user expectation
mismatches by leveraging additional devices, such as wearable
technologies for extracting motion inputs [26], and haptic
sensors for feedback [27]. In contrast, Li et al. [28] presented
a method that learns personalized human preferences offline to
map user inputs to expected robot behaviors, without relying
on external sensors. We aim to develop a mapping framework
that can operate online without the need for offline training,
for practical reasons. Our system is designed to minimize the
need for users to guess the impact of their inputs on the robot,
reducing the workload for controlling the robot.

III. MOTIVATING EXAMPLE

To be useful, assistive robots need to be able to complete
a large quantity of tasks, from helping their users to grab an
item on the floor to helping with ADLs. Furthermore, such a
robot could also be used beyond chores, for example to help
someone with severe mobility limitation to draw or paint. In
all these situations, SA can help keep users in control while
the robot reduces their workload. However, to be useful, two
main conditions need to be satisfied: (1) teaching new robot
behaviors should be quick, and (2) the shared control paradigm
should be intuitive.

In this paper, we use a geometric SA framework allowing
robots to learn behaviors from two demonstrations showing
the amplitude of the motion. For example, a caregiver could
demonstrate a laundry loading behavior by manually moving
the robot from a basket to the machine twice, once on the right
side and once on the left side. Then during behavior execution,
the robot executes a nominal behavior, corresponding roughly
to the average trajectory, and the user can provide corrections
using their electric wheelchair joystick to address the vari-
ability in the new environment and ensure task success, for
example lifting the robot higher for longer garments. However,
to be efficient, the impact of these corrections should be
intuitive for the user, they should not have to guess what
would happen if they move the joystick right or forward.
Consequently, we need a consistent mapping between the user
joystick and the robot corrective motions that would remain
transparent at each step in the task and regardless of the user
perspective.

IV. BACKGROUND WORK ON CANAL SURFACES AND
GEOSACS

We build our work on top of GeoSACS, which aims at
tackling the dimensionality challenge in controlling high-DoF
robots using low-DoF controllers. GeoSACS is based on canal
surfaces [6], a learning from demonstration approach capable
of encoding robotic behaviors from only two demonstrations.
These canal surfaces are composed of a series of 2D disks,
capable of representing various shapes tailored to different



tasks. Users can provide corrections to guide the robot’s
movement on these 2D disks while the robot navigates along
the canal, enabling effective 6D control using a 2D input.

GeoSACS begins by processing two kinesthetic demon-
strations. This phase involves using dynamic time warping
(DTW) [29] to temporally align the demonstrated trajectories,
followed by a cubic spline-based step filter to further smooth
them. After processing, we generate a regular discretized
curve, known as the directrix. At each point ds along the
directrix, the radii of the disks, orthogonal to the tangent vector
of the curve, are represented by the function r(s) ∈ R, with
s denoting the discrete state. After generating the canal, the
next step is to determine the correction axes on the canal’s
disks. GeoSACS employs a global alignment approach using
spherical linear interpolation (Slerp) to calculate the correction
x-axis, xs on a disk. For the correction y-axis, ys, we use
a local alignment method, applying a windowing strategy to
refine the axis alignment. Within the generated canal and along
the correction axes, trajectory generation follows the ratio rule
[21]. While the robot autonomously navigates the canal, it
pauses its movement when a user issues a command and
adjusts along the correction axes on the disk orthogonal to
its current direction. Once the user stops providing input, the
robot resumes navigating the canal from the new point.

As shown in Figure 1, we argue that user inputs should be
aligned with the correction axes on the disks, as otherwise
misalignment can lead to control issues due to the varying
directions of the correction axes caused by the shape and bends
in the generated canal. Additionally, the smoothness of the
generated canals in GeoSACS is insufficient, especially for
tasks like painting, which required special attention.

V. METHODOLOGY

The goal of our approach is to make control of the robot
more intuitive. We propose to do it in three ways: (1) make the
canals smoother to avoid natural backtracking when disks are
crossing, (2) increase the manipulability where users need it,
and (3) provide a more intuitive mapping between user inputs
and joystick motions. Our code is available online1.

As robots are expected to interact in carpentered worlds (i.e.,
environments that have been engineered to have typically flat
surfaces and right angles), we assume that users mostly need
to interact with horizontal (e.g., table) and vertical (e.g., wall)
planes. As such, our method tries to increase manipulability in
such areas by ensuring that if the final canal sections are close
to a vertical or horizontal plane, they become aligned. Finally,
we initially assume that if a user pushes the joystick right,
the robot should move toward the “right” and if the joystick
is pushed forward, the robot should either go forward (if the
disk on the canal is near horizontal) or up (if the disk is near
vertical).

A. Initial mapping

To align user inputs to corrections on a disk, we identify
two situations, near-horizontal disks and near vertical disks

1hiips://gitlab.idiap.ch/hrai/geosacs.git

(see Figure 2). When a user issues a directional command via
the joystick, the system identifies the relevant disk and extracts
the corresponding correction axes (i.e., the correction x-axis
xs and y-axis ys). For near-horizontal disks, these correction
axes are projected onto the ground plane, and their alignments
with the joystick axes are calculated using the dot product
values and their associated signs. For near-vertical disks, one
correction axis is typically more vertical, aligned with the
global z-axis, zG, while the other is typically more horizontal,
aligned with the ground plane. jy is aligned with the “vertical”
correction axis, so when the user pushes the joystick forward
(positive jy direction), the robot moves upward, and vice versa.
The remaining correction axis is aligned with jx by projecting
onto the ground plane and taking the dot product with jx.

(a) Near-horizontal
disks

(b) Near-vertical disks
facing the user

(c) Near-vertical disks
facing sideways

Fig. 2: Categories of disks found within a canal

B. Pilot Study

To experiment with and gather feedback on our mapping
method, we conducted a pilot study with three participants
including three types of tasks: an object relocation task, a
laundry loading task, and a painting task (see Figure 3).
The first two participants used only a single condition (initial
version of our approach) assessing and refining the method
for intuitiveness. We learned that for the near-vertical planes
facing sideways (see Figure 2c), users expected movement in
one direction when the disk was on their left and the opposite
when on their right, with direction remaining consistent on
each side and only changing when switching sides. The
third participant tested two conditions: the refined mapping
framework based on feedback from the first two participants,
and the baseline condition, GeoSACS, allowing us to confirm
the feasibility of a full study for the formal evaluation.

The canals for the three task types were generated using
the pre-processing steps outlined in GeoSACS, with only
two demonstrations. For the studies, we used the Lio robot,
designed specifically for eldercare and home environments by
F&P Robotics [30], along with an Xbox gaming controller to
capture user inputs.

C. Dynamic Input Mapping Framework

Building on insights from the pilot studies, we finalized
our input mapping strategy. The intuition is that for horizontal
disks, the “right” and “forward” joystick directions are aligned
with the robot motions; for vertical disks facing the user,
“forward” is mapped to “up” for the robot, “right” is aligned;
and for sideways disks, “forward” is mapped to “up”, and
“right” will be mapped to “forward” if the disk is on the



Algorithm 1 Dynamic Input Mapping

1: Input: xs, ys, jx, jy, eT (s), zG, ds
2: Output: Ax,Ay, Dx, Dy

3: θ ← arccos
(

eT (s)·zG
|eT (s)||zG|

)
4: if π

3 < θ < 2π
3 then

5: disk orientation← “near-horizontal”
6: else
7: disk orientation← “near-vertical”
8: end if
9: if disk orientation is “near-horizontal” then

10: px,py ← PROJECTION(xs, ys)
11: Ax, Dx ← (|jx · px| > |jx · py|) ? (xs, SIGN(jx · px)) :

(ys, SIGN(jx · py))
12: Ay, Dy ← (|jy · px| > |jy · py|) ? (xs, SIGN(jy · px)) :

(ys, SIGN(jy · py))
13: else if disk orientation is “near-vertical” then
14: if |ys · zG| > |xs · zG| then
15: Ay ← ys, Ax ← xs, Dy ← SIGN(ys · zG)
16: else
17: Ay ← xs, Ax ← ys, Dy ← SIGN(xs · zG)
18: end if
19: px ← PROJECTION(Ax)

20: θAx ← arccos
(

px·jy
|px||jy|

)
21: if 5π

6 > θAx
> π

6 then ▷ The disk is facing the user
22: Dx ← SIGN(jx · px)
23: else ▷ The disk is facing sideways
24: Px, Py, Pz ← R⊤ · ds, R← [jx jy (jx × jy)]
25: Dx ← (Px < 0) ? SIGN(jy · px) : −SIGN(jy · px)
26: end if
27: end if
28: return Ax,Ay, Dx, Dy

user’s left side, and to “back” if the disk is on the right side.
For a more precise explanation, refer to Algorithm 1 with the
following notations: the disk where the correction is applied
denoted as Cs, the correction axes on Cs as xs and ys, the
coordinates of the directrix point at the center of Cs in global
frame as ds, and the tangent vector to the directrix at that point
as eT (s). Finally, the aligned correction axis and direction for
jx are denoted as Ax and Dx, and for jy , as Ay and Dy , with
a projection function indicating the projection to the ground.

D. Other Improvements

1) Smoothing Canal Surfaces: To simplify manipulations
on horizontal and vertical planes at the extremities of the
canal for pick-and-place or painting, we ensured that the
tangent vectors near the ends would be orthogonal to either a
horizontal or vertical plane, and we perform an optimization
to smoothen the transition between the aligned disks and the
non-aligned ones. We start by classifying the canal end Es

as either vertical or horizontal, by computing θ, the average
angular distance between the mean direction of the last 10
tangent vectors and the global z axis zG and then align it with
the closest axis.

Based on this classification, we force the last part of the
canal (set empirically to 20% in our experiments) to be
either vertical or horizontal. This guarantees that the robot
moves through these regions along clean vertical or horizontal
paths, simplifying user control and interpretability. Due to
this forced alignment of the disks at the ends, intersections
between adjacent disks may occur, that we minimize through
optimization.

2) Moving Out of Canals: During the pilot studies, par-
ticipants also mentioned that it would be helpful if the robot
could move slightly beyond its current range when needed.
This issue was especially noticeable during the laundry task,
where clothes would sometimes hang from the edge of the
laundry drum. When participants attempted to move the robot
down to push the clothes further inside, it did not respond
as they expected. This limitation occurred because, during the
demonstrations, it was difficult to demonstrate an exact margin
without risking a collision. To address this, we implemented
a method that allows users to move partially outside the
generated canal. However, we limited this extension to prevent
any safety issues that could arise from unrestricted movement
beyond the canal. For safety purposes, after the correction is
applied, we gradually shrink the radius, ensuring that after a
window of 10 disks (which in practice is less than 5cm), the
robot returns to moving along the canal’s boundary.

VI. COMPARATIVE USER STUDY

Our first goal in this article is to evaluate the new mapping
system proposed here. To do so, we conducted a user study
with 20 abled participants recruited from the research institu-
tion, and mixing both technical and administrative staff. The
study aims to compare our method to a GeoSACS baseline.
However, it is important to note that since GeoSACS lacks a
method to refine the canal and ensure the disks are vertical as
in our case, for the painting task, we had to manually adjust
the disk near the painting board to be perfectly vertical.

A. Tasks

Similarly to our pilot study, we used three different tasks
to evaluate our method. Participants had up to eight minutes
to complete each task, or could stop when they considered
having finished the task.

1) Object Relocation Task: : In this task (see Figure 3 top
row), participants are asked to move three objects randomly
located from a table on one side of the robot to a location
marked on a printed sheet on a second table on the other
side of the robot. The motivation for this task is to evaluate
the performance in general tabletop pick-and-place tasks that
could be encountered in daily life. Two demonstrations were
conducted in a way that the canal is generated to link the two
tables, allowing users to guide the robot in placing the objects
at their intended goal locations.

2) Painting Task: : In this task (see Figure 3 middle row),
participants are asked to pick up brushes with custom-designed
holders on a table (pink, blue, and yellow) and use them to
paint as they wish on a paper sheet on the wall in front of the
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Fig. 3: Data collection from participants including the gener-
ated canals for the three tasks.

robot. This task is inspired from [31] supporting the idea that
assistive robots should also support creativity. As such, this
task’s evaluation is primarily subjective. Due to the challenge
of picking up brushes, participants were instructed to grasp
the paint brush as best as they could, and the experimenter
would manually check the brush and ensure it is properly
grasped, allowing participants to focus on their painting.
To switch brushes, participants could drop them on a plate
before picking another one. If needed, experimenters would
refill the container and replace the brush inside, restoring
it to the original position. The canal was created from two
demonstrations to cover the three brush holders and the plate
on one side, and the vertical paper sheet on the other side.

3) Laundry Loading Task: : In the last task, participants
were instructed to load five clothing pieces from a basket to
a laundry machine (see Figure 3 bottom row). The goal of
this task is to evaluate the system’s performance in real ADLs
with 3D interaction. The positions of the clothing items were
randomized between experiments. Participants were instructed
to push any clothes hanging out of the laundry drum door after
their initial attempt to place them inside. The canal was created
from two demonstrations to cover the laundry basket on the
ground and to go inside the laundry machine.

B. Procedure

The study procedure was reviewed and approved by the
ethics committee of our institution. We employed a within-
subjects design, with the two methods counterbalanced to
minimize order effects, and the task order was fixed (object
relocation, painting, and laundry loading).

At the beginning, participants were given a brief intro-
duction to the study and the tasks involved, followed by
obtaining their informed consent. Participants then completed
a demographic questionnaire, which included questions on a
5-point Likert scale about their prior experience with robots
and gamepads, such as an Xbox joystick. All participants were
compensated CHF 37.5 for their participation in the study, and
the study lasted around one and half hours.

We then moved into the training phase, with the goal of
familiarizing participants with the gamepad controls. Our setup

consisted of four joystick buttons: one to start, one to change
the movement direction within the canal, one to open/close the
gripper, and one to stop. Additionally, the left 2D joystick of
the Xbox gamepad was used for providing corrections on the
disks. The controls remained the same for both methods, with
the only difference being the robot’s movements resulting from
the online mapping mechanism. The training was structured
as a tabletop pick-and-place task, where we placed a can on
one table and a paint brush with the custom-designed holder in
an empty container, and introduced the control mechanism to
the participants. During the training phase, the object location
markers for the object relocation task were covered with paper.
Participants were given 8 minutes to freely explore the controls
and observe their effect on the robot. Most participants picked
up the can and placed it on the other table, while some
attempted to grasp the paint brush from the holder and place
it in the can on the other table. Afterward, they proceeded to
complete the tasks in the order previously mentioned. After
finishing a set of tasks, participants answered a questionnaire
(see next section). This process, including training, tasks, and
questionnaire, was followed for the second condition. Finally,
the experiment concluded with a semi-structured interview,
debriefing, and compensation.

C. Variables
1) Independent Variables: Our study has two conditions:

(1) the GeoSACS SA baseline (with the painting canal verti-
calized), and (2) our approach with additional input mapping
and canal smoothing.

2) Dependent Measures - Objective: For both the object
relocation and laundry loading tasks, we measured the time
taken to complete the task and the proportion of time spent
on providing corrections relative to the total task time. For the
object relocation task, our performance metric was the number
of objects correctly positioned at the target location within the
allotted time. For the laundry loading task, we implemented
a point-based scoring system: participants received two points
for each piece of clothing fully placed inside the laundry drum,
one point if part of the clothing was hanging from the laundry
drum door, and zero points if the clothing remained in the
basket or fell on the floor where it could no longer be picked
up. Thus, the maximum score a participant could achieve for
the five clothing pieces was 10 points.

3) Dependent Measures - Subjective: At the end of each
condition, we asked participants to complete a 7-point Likert
scale using the USE questionnaire [32], focusing on the
sections for ease of use, ease of learning, and satisfaction, for
a total of 22 questions. Additionally, participants completed
the NASA-TLX questionnaire [33] to assess the workload
associated with each method. A semi-structured interview was
conducted at the very end of the study to gather feedback on
usability, efficiency, perceived safety, workload, and overall
impressions of the method.

D. Hypothesis
Our evaluation consisted of the following two hypotheses

(with their associated predictions):



H1: Users will complete tasks efficiently using GeoSACS
combined with the mapping framework compared to using
GeoSACS alone.

P1.1: Users will complete object relocation task in less
time with our method.
P1.2: Users will complete object relocation task with
fewer corrections using our method.
P1.3: Users will position objects more accurately in the
object relocation task using our method.
P1.4: Users will achieve higher scores for placing
clothes inside the laundry machine with our method.

As we anticipated that not all participants would complete
the laundry loading task within the allocated time, we excluded
times related to the laundry task from our predictions.

H2: GeoSACS combined with the mapping framework will
be more intuitive than GeoSACS alone.

P2.1: Users will report higher usability with our method.
P2.2: Users will report lower workload with our method.

E. Population

The comparative study was conducted with 20 abled par-
ticipants (twelve male, eight female) aged 25 to 48 (Mean =
30.65, SD = 5.9268), primarily recruited from our research
institute, with one participant recruited externally by word
of mouth. Our participants were composed of a mixture of
technical staff and administrative staff. The mean values for
prior experience with robots and gamepads were observed
to be 2.05 ± 1.36 and 3.30 ± 0.95, respectively, based on
responses collected using a 5-point Likert scale, where lower
scores indicate less prior experience.

F. Results

The results for the object relocation and laundry loading
tasks are presented in Table I. We used a Wilcoxon signed-rank
test to calculate the p-values, as a Shapiro-Wilk test indicated
that the data did not follow a normal distribution, except for the
correction time in the laundry loading task, where the data was
normally distributed, and where we conducted a paired t-test.
These results supported P1.1 but did not support P2.2, despite
a trend toward significance. A possible explanation, observed
during the studies, is that some participants frequently issued
corrections in both conditions instead of utilizing the robot’s
autonomous routines effectively.

Moreover, all 20 participants successfully placed all three
objects using our method, compared to an average score of
2.55 (SD = 0.58) for GeoSACS alone, with a Wilcoxon test p-
value below 0.01 (Z = 0), supporting P1.3. The discrepancy in
performance stemmed from the trial-and-error approach used
with GeoSACS, where, during object picking, the end effector
would occasionally disturb nearby objects. This made it harder
to grasp these objects later, as some would roll into positions
where they could no longer be retrieved.

For the laundry loading task, our method achieved a higher
average score of 9.26 (SD = 0.96) compared to 8.26 (SD
= 0.95) for GeoSACS (Z = 2.262, p < 0.01 (Wilcoxon)),
supporting P1.4. One participant’s data was excluded from

TABLE I: Completion and correction times for the two meth-
ods in the object relocation and laundry loading tasks.

Task Metric GeoSACS Ours p-Val
Mean SD Mean SD

Object
relocation

Completion time 259.02 71.05 220.45 36.60 <0.05
Correction time 69.29 52.94 54.70 30.22 0.058

Laundry
loading

Completion time 427.13 69.70 385.84 75.50 0.053
Correction time 121.43 44.05 107.57 42.64 0.26

the analysis, as they spent excessive time pushing clothes
into the machine rather than following the instructions to
first place as many clothes as possible. This participant was
identified as an outlier using Tukey’s fences, which justified
their removal from the final calculation. Together, these results
provide partial support for hypothesis H1.

Regarding subjective measures, for the painting task, all
participants preferred our method. Except for one, all partic-
ipants used all three colors to complete their paintings. With
GeoSACS, participants generally struggled to create anything
meaningful. In contrast, with our method, several participants
were able to produce recognizable paintings, such as flowers
with a sun in the background, hearts, smiley faces, and even
letters (see Figure 4b). Figure 4a shows participants’ evalua-
tions of ease of use, ease of learning, and satisfaction for both
methods, as well as the ratings across the six dimensions of the
NASA-TLX. The results indicate that our method consistently
outperforms GeoSACS across all measured metrics, validating
our predictions P2.1 and P2.2, and ultimately supporting H2.

The results from the semi-structured interviews conducted
at the end of the experiments further reinforced our findings.
Every participant preferred our method for all tasks, except for
one participant who favored GeoSACS for the laundry loading
task. For the intuitiveness of the mapping, several participants
remarked, “The second method [ours] was more intuitive”, “I
liked the first method [ours] very much”, “It is intuitive to use”,
“It was great”, and “The first one [ours] felt natural way to
control”, further confirming the intuitiveness of our mapping
framework. Regarding the ease of use of our method, a few
participants commented, “It was easy to use”, ”You don’t even
have to think”, and “The first one [ours] was quite easy”.

Several participants specifically commented, “This is like
playing a game”, “It was easy to use, friendly, and fun”, and
“It was really fun to use”. These sentiments, coupled with
12 participants selecting “strongly agree” for the question
“It is fun to use” in the satisfaction section of the USE
questionnaire, highlight that our method is not only effective
but also enjoyable for users.

Regarding suggestions, most participants recommended
adding a pause button to stop the robot at any point and
then resume it by pressing the same button again. Another
common suggestion was to provide control over the robot’s
execution speed. Several participants proposed the option to
slow down in areas of high uncertainty, such as near tables,
the laundry basket, or the painting board, which would allow



(a) Participant ratings for ease of use, ease of learning, and overall satisfaction (higher the better
with p-values calculated using paired t-test). Workload was assessed across the six dimensions of the
NASA-TLX scale (lower the better with p-values calculated using Wilcoxon test). [(*) denotes p <
0.05, (**) denotes p < 0.01, and (***) denotes p < 0.001].

(b) Some meaningful paintings
done by participants using our
method within 8 minutes. They suc-
cessfully used all three colors.

Fig. 4: Subjective results from the comparative study conducted with 20 participants.

for more precise task completion. Lastly, a few participants
suggested introducing a separate button to rotate the end
effector, enabling them to adjust the grip as needed, rather than
being limited to the grasp orientation demonstrated initially.

VII. ACCESSIBILITY WORK

We then explored how to adapt our method for users with
disabilities, the population for which assistive robots would
make most sense. For example, we previously used a standard
Xbox gamepad in the comparative study, which may not be
well-suited for individuals with disabilities due to its small
buttons and joysticks limiting accessibility. We first looked
for wheelchair inspired joysticks, but mostly found limited,
costly, and older devices. We then explored the work done
in the accessible gaming community [34], which has explored
more accessible interfaces for disabled gamers [35], and finally
found the recently released Sony Access Controller2. This
controller is a specialized gamepad with customizable buttons
and a larger and easier to manipulate joystick closer to those
found in electric wheelchairs, and as such, we decided to use
it for our future work.

VIII. EXPLORATORY STUDY WITH WHEELCHAIR USERS

Based on the results of our comparative study and ac-
cessibility work, we conducted an exploratory study of our
approach with wheelchair users to evaluate it with a popula-
tion closer to our target audience. This served as an initial
evaluation before implementing further design improvements
in future, which will be guided by a participatory design
approach aimed at bringing SA-based assistive robotics to real
users who could benefit from it.

A. Population

This study was conducted with 3 participants, all wheelchair
users, two used manual wheelchairs with one using additional
electric assistance, and one used an electric wheelchair but

2Sony Access Controller: hiips://www.playstation.com/en-gb/accessories/
access-controller/

could temporarily walk. One participant also brought their
partner to the study site. For local ethical reasons, we cannot
report health data of participants. We recruited participants
from the local community by distributing flyers to local groups
and therapists. Participants were aged 52 to 61 (Mean = 56.67,
SD = 3.68) with two females and one male. The study lasted
around one hour and half and was compensated with CHF 50.

B. Procedure
The procedure followed was similar to the comparative

study, with the same consent process, training, and tasks in
the same order. However, we made the following key changes
for accessibility: (1) we only evaluated our method, (2) we did
not impose any time limit, (3) the experimenter could provide
some occasional verbal guidelines and encouragements, and
(4) we did not ask them to complete the full questionnaires as
it can be tiring and complicated to do, instead we used these
questions to drive our semi-structured interview.

C. Results and Observations
All the wheelchair participants were successful in the relo-

cation task, however for two participants, one object needed
to be replaced in their initial position after being pushed
accidentally. The painting task proved a bit more challenging,
participants tended to give themselves short-term objectives
(e.g., drawing a spiral or filling a rectangle) and achieved
partial success. For the laundry tasks, participants scored 9,
9, and 10 without the experimenter help (but the robot had to
be restarted once due to a collision and network issue).

During the study, one participant commented that the
gamepad reminded them of a wheelchair joystick, which was
the intention behind the selection. Another participant was
talking to the robot, providing it with encouragement and
instructions. However, a participant also reported challenges to
see perspectives, which impacted their use of the robot. During
the debrief session with the experimenter, they suggested that
having access to the front camera could be useful.

One participant stated that such a system could already be
useful, especially for laundry, as both loading the machine and



removing clothes from a drying rack are challenging. Others
mentioned that it could be useful to lift heavy objects from
the ground or access things high up. However, all participants
reported that it would be more useful for people with severe
mobility limitations: “with this type of things we could do
a lot of things, especially for disabled people with [heavier
pathologies]”, another participant even mentioned that they
would recommend the study to a friend.

Two participants mentioned that the system was easy to use,
and while painting was reported as being more challenging,
they reported they enjoyed it, and one mentioning that it
would take a few trials to get better at it. The last participant
had a few more challenges, partially due to the perspective
and a perceived high temporal load, when actions needed
to be synchronized: “when it worked for the first time, I
was very happy, [...] but when it didn’t work, [I was] more
lost”. They compared their experience with electric wheelchair,
stating that it would be useful to adapt the speed to have
fine control when needed. Additionally, they suggested that
for home deployments, it would be useful to have a cheat
sheet with the different buttons.

An interesting point is that participants assigned agency
to the robot, talking to it, using expressions like needing to
“give it some time”, “it did what it wanted”, or “[when I was
rushing it] it felt like it was losing its memory”. Overall, every
participant mentioned it was fun and volunteered to participate
in more studies.

IX. DISCUSSION

The results from the comparative study indicate that our
method holds significant promise for handling complex tasks.
Additionally, the paintings created by participants demonstrate
the feasibility of our approach for creative and intricate tasks.
Moreover, the initial exploratory study with wheelchair users
highlighted strong engagement and the potential of our method
for individuals with disabilities. However, further refinements
through participatory design and more rigorous evaluations are
necessary to fully realize its potential.

A. Insights

Overall, participants found the method to be flexible and
intuitive to control. During the study, they appeared relaxed
due to the robot’s autonomous behavior, allowing them to in-
tervene only when necessary. Many participants even engaged
in conversation with the robot, offering comments such as
“Bravo Lio”, “No no no”, and “Oh, sorry Lio” which suggests
that a more interactive environment could be developed with
feedback mechanisms, including verbal responses from the
robot. Interestingly, a few participants initially expressed ap-
prehension when introduced to the tasks. However, by the end
of the study, all participants reported feeling confident about
the robot’s safety and their own. This feedback indicates that
our SA approach not only enabled convenient robot control,
but also increased user confidence to use such systems.

Our exploratory study with wheelchair users provided initial
support toward the usability of our system by this population,

and provided us additional knowledge about the potential
users benefiting most from the system as well as design
improvements.

B. Limitations and Future Work
1) Limitation of the approach: Despite the proposed

method allowing some flexibility to move outside the gen-
erated canal, the robot’s motions are still largely confined to
the canal structure. This limitation was particularly noticeable
when objects or clothes accidentally fell into areas outside
the robot’s reach due to the canal’s constraints. Additionally,
participants sometimes struggled to maintain a clear view of
the task, with their line of sight obstructed by the robot’s body.
This issue was especially evident during the laundry and paint-
ing tasks, where participants were seen shifting their heads to
gain a better perspective, which was especially challenging for
wheelchair users. Moreover, further refinements are necessary
for the system to handle tasks requiring precise manipulation.
The current system also lacks environmental awareness and
still relies on kinesthetic demonstrations.

For future work, we plan to integrate vision-based tech-
niques to enable the generation of demonstration-free, lightly
constrained canals, and communicate more information to the
user, e.g., by displaying the robot view. Building on participant
feedback, we also aim to develop a velocity adjustment
mechanism and an end effector orientation control system,
which will enhance the robot’s capabilities for more precise
manipulation tasks.

2) Limitation of the study: Our study also contained limita-
tions. First, it only compared our approach to a single baseline
and in a short-term interaction. We made this decision as
other SA frameworks can be challenging to adapt to complex
3D tasks as the one explored in this paper. Furthermore, the
comparative study was limited to 20 participants, and we
only recruited 3 wheelchair users in our exploratory study.
To enhance the validity of our findings, we plan to involve a
broader and more diverse population in our future work.

Additionally, we plan to conduct more in depth participatory
design with wheelchair users in the future to improve the
accessibility, usability, and usefulness of our approach for
this population. Finally, the willingness of our wheelchair
participants to engage in future research activities is a positive
sign for the next steps of this research.

X. CONCLUSION

In this paper, we presented the design and evaluation of our
input mapping mechanism for controlling high-DoF robots,
aimed at enhancing usability of assistive robots. A comparative
user study with 20 abled participants across a range of tasks
demonstrated the efficiency, usability, and reduced workload
enabled by our method compared to a baseline. Additionally,
we conducted an exploratory study with 3 wheelchair users,
utilizing a specialized gamepad with larger buttons and joy-
stick similar to those found on wheelchairs. The results from
this study, serving as a first step toward a participatory design
approach, suggest that our method shows great potential for
assisting individuals with disabilities.
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