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Abstract. We present an algorithm for the tracking of a variable number of 3D
persons in a multi-camera setting with partial field-of-view overlap. Th&imu
object tracking problem is posed in a Bayesian framework and reliesjainta
multi-object state space with individual object states defined in the 3D world.
The Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) method id tse
efficiently search the state-space and recursively estimate the multi-abjec
figuration. The paper presents several contributions: i) the use aedséeon of
several key features for efficient and reliable tracking (e.g. thettge MCMC
framework for multiple camera multiple object tracking; the use of powéddi-

man detector outputs in the MCMC proposals to automatically initialize/update
object tracks); ii) the definition of appropriate prior on the object statekwmitdo
account the effects of 2D image measurement uncertainties on thej & state
estimation due to depth effects; iii) a simple rectification method aligning people
3D standing direction with 2D image vertical axis, allowing to obtain better object
measurements relying on rectangular boxes and integral imagegprgsent-

ing objects with multiple reference color histograms, to account for \iditiab

in color measurement due to changes in pose, lighting, and importantly multi-
ple camera view points. Experimental results on challenging real-wodHiirg
sequences and situations demonstrate the efficiency of our approach.

1 Introduction

Multiple object tracking (MOT) in video is one of the fundantal research topics in
dynamic scene analysis, as tracking is usually the firsttstéme applying higher level
scene analysis algorithms. While fairly good solutions t® titacking of isolated ob-
jects or small number of objects having transient occlusiave been proposed in the
past, MOT remains challenging with higher densities of peomainly due to inter-
person occlusion, bad observation viewpoints, small téiwl images, entering/leaving
of people, etc. These situations are often encountere@ iviskial surveillance domain.
There is an abundance of literature devoted to MOT. In pastsystate-space mod-
els [1-3] have been shown to be the most successful. Altheagte methods choose
to use a single-object state-space model [3], only a mogaig formulation of the
MOT problem using a joint state space model allows objeetrattions and identity to
be properly defined. In general, interactions is defined daseproximity, occlusion
being so far the most studied problem. Tracking a variabieber of objects with par-
ticle filters (PF) has been addressed in [1,4—6]. These wudtdighted the need for
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a global observation model to deal with multi-object confagions varying in number,
in order to obtain likelihoods of the same order of magnitémteconfiguration with
different number of objects.

To alleviate the occlusion problem in medium to crowded ssethe use of mul-
tiple cameras and the fusion of the information between theoomes almost neces-
sary [7-9]. Fleurett al. [9] proposed an algorithm that can reliably track multipés-p
sons in a complex environment and provide metrically adeupasition estimates by
combining a probabilistic occupancy map. Du and Piater {8pnt a novel approach
to ground-plane tracking of targets in multiple cameras &ingi collaborative particle
filters. This method performs very well and can handle ther@uige foot positions and
some calibration uncertainties. Regretfully, the curgmproach is available only for
single object tracking.

In this paper, we propose a novel algorithm to automatiaidhgct and track a vari-
able number of people in a multi-camera environment withigldfield of view over-
lap. More precisely, we adopt a multi-object state spacesBiay formulation, solved
through RJ-MCMC sampling for efficiency reasons [4, 6]. Theppsal (i.e function
sampling new state configurations to be tested) used in thisnse takes advantage
of a powerful machine learning human detector allowing ficieihtly update tracks
or initialize new tracks. We adopt a 3D approach where oljtaies are defined in
a common 3D space allowing to represent people with a bodyemadd to facili-
tate occlusion reasoning. The multi-camera fusion is sbbhyeusing global likelihood
models over foreground and color observations. Our cauttdhs are to combine and
integrate efficient algorithmic components in our frameéwahich have been shown
in the past (often separately) to be essential for accuratestiicient tracking, and to
propose additional techniques to solve specific issuestasatebelow.

One issue in multiple object tracking is object interactiondeling. This can be
done by defining priors over the joint state space. Such iosually based on ob-
ject proximity, which prevents objects of occupying the sastate space region or ex-
plaining twice the same piece of data. In our case, we propwsefine such priors
by exploiting both the body orientation in the definition abgimity, and by using the
prediction of the future object state to model that movinggde tend to avoid colliding
each other.

Multi-camera tracking in surveillance scenarios is uguallite different than track-
ing in indoor rooms. Larger field-of-view (FOV) cameras asedito cover more phys-
ical space, the overlaps between the FOV are smaller, argappear with dramati-
cally different image resolutions due to their placements goints of views. As a con-
sequence, a small and seemingly not significative 2D posii@ange (e.g. one pixel)
in one view can correspond to a large position change in theratiew, as illustrated
in Fig. 2. This is particularly problematic &tansitions between FOV cameras, when
a person enters a new view which has much higher resolutamttie current one. As
due to this uncertainty, the projection of the current eateaxdoes not match at all the
person in the new view. As a result, the tracker will assuragttie person remains only
in the first view, and will initialize a new track in the new weTo solve this issue, we
propose to integrate in the 3D object state prior a compowaith models the effects
of the image estimation uncertainties according to the siewvhich the object is vis-
ible, and to use a proposal taking into account the humarctigteoutput per view to
draw samples at well localized places in the new view.

One final novelty of the paper is an image rectification stegwéhg to reduce peo-
ple geometric appearance variability in images due to teetisf large FOV cameras.
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Figure 1: Vertical vanishing point mappind.eft: after distorsion removal and before the map-
ping. We can observe people slant according to their posi@eniral: after the mapping to the
infinity. Bounding-boxes will fit more closely the silhouette of peoght: another example.

More precisely, in these cases, people often appear slanted border of an image,
even after the removal of radial distorsions, as illusttate=ig. 1. This is a problem for
human detectors which often consist of applying a classifierectangular regions, or
in other tasks (e.g. tracking) when integral images are tesefficiently extract features
over boxes, as the variation of people orientation in thegiengill affect the consistency
of the extracted features (with respect to an upright stay)dind will ultimately harm
the detection or tracking processes. To remove this vditiahve propose a simple rec-
tification scheme which is applied to the inputimage as gypoeessing step. It consists
of mapping the 3D vertical lines into 2D vertical image linas illustrated in Fig. 1.
The method is shown to introduce negligible image distmisi@nd can be applied in
any scenarios where an initial calibration step is feasible

The rest of this paper is organized as follows. Section 2gmtssour slant removal
rectification procedure. The multi-camera multi-persaking framework is described
in Section 3, along with its main features. Experimentalitson real data are reported
in Section 4, followed by the conclusion in Section 5.

2 Calibration and Vertical Vanishing Point Mapping

Camera Calibration: Cameras were calibrated using the available informatiah an
exploiting geometrical constraints [10], like 3D lines slibappear as undistorted, or
vertical directionZ is obtained from the image coordinates of the vertical fang
point v, computed as the intersection of the image projections et @s3D world
parallel vertical lines. The image-to-ground homographyvas estimated using a set
of manually marked points in the image plane and their 3Despondences in the 3D
ground plane.

Removing Slant by Mapping the Vertical Vanishing Point to Infinity: In Fig. 1, we
observe that standing people appear with different slantise image. This introduces
variability in the feature extraction process when usirgaegular regions. To handle
this issue, we propose to use an appropriate projectivefoamationH | of the image
plane in order to map its vertical finite vanishing point toodnp at infinity. As a result,
the 3D vertical direction of persons standing on the grouadgwill always map to
2D vertical lines in the new image, as illustrated in Fig. hisTtransformation should
thus help in obtaining better detection results or extngathore accurate features while
still keeping the computation efficiency, e.g. by using gmé images.

Our goal is to find a 2D homograpii ; that maps the image vertical vanishing
pointv, = (z,,y,,1)" to a vanishing point at infinity0, y..,0) " wherey,, can
be any non-zero value. As the above mapping alone is notiguffito fully define the
homography, we must enforce additional constraints inramavoid severe projective
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distortions of the image. To obtain a resampled image tloédslas much as possible like
the original image, we enforce that the transformafibn should act as far as possible
as a rigid transformation in the neighborhood of a givenctetépointx, of the image.
This means that the first order approximation of the tramsfior the neighborhood of
xq should be a rotation rather than a general affine transformapropriate choice of
Xo 10 enforce such as constraint can be the image center.

For the moment, assume thea is the coordinate system origin, and that is
located on the axis, i.e.v, = (0,%.,1) . Then we can consider the homogragy
which maps the vertical vanishing point to a point at infinityy.., 0) " as required,
and maps a 2D poirtz, y) into a 2D point(z’, y") according to:

ez bl 5 st il

(Yoo —¥) LY 0 Yo

The last part above provides the Jacobian of the transfodmasdels the linear dis-
torsions. It shows that, at the origifi, 0), the Jacobian is equal to the identity matrix,
which means that no linear distorsions are introduced byrémesform at this point.

In the general case, it is easy to show that for an arbitratdged point of interest
xo = (z0,v0,1) " and vertical vanishing point; = (z,,y,,1)", we can reach the
above special case by applying first the translafiothat maps the origin of the coor-
dinate system to the selected paiqt and then the rotatioR which brings the trans-
lated vertical vanishing point on theaxis. The required mappird , is then given by
H, = GRT, and can be used to warp the undistorted image and obtainghted
image (central image in Fig. 1). Accordingly, the new imageround homographii
can be updated (e.51 = HH ).

3 Multi-Camera Multi-Person Tracking

In this section, we introduce the multi-camera multi-per8b tracking algorithm
based on a Markov Chain Monte Carlo (MCMC) sampling method, then provide
the main elements of the model, focusing on the main aspéots @pproach.

3.1 Bayesian Tracking Framework and 3D Multi-Person State Rpresentation

In the Bayesian framework, the goal is to estimate the ciit probabilityp(X;|Z.,)

of the joint multi-person configuratiok, at timet given the sequence of observations
Zy.+ = (Z,,...,7Z;). This posterior probability)(f(t|Z1;t), known as the filtering dis-
tribution, can be expressed recursively using the Bayes éfjuation:

. 1 - L. - -
PR 21— (2 R0) x [ KR )p (R 21K, &

Xi—1

where the dynamical modeh(X,|X;_1), governs the temporal evolution of the joint
stateX,; and the observation likelihood moQ&ﬂ?t|Xt) measures the fitting accuracy

of the observation datZ, given the joint statéX;. C' is a normalization constant. In
non-Gaussian and non-linear cases, the filter equationecapgroximated using Monte

Carlo methods, in which the posterp(rXﬂZl:t) is represented by a set 6f samples
(XN For efficiency, in this work we use the Markov Chain MontelG&MCMC)
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method, where the set of samples have equal weights and f@woacalled Markov
chain. Consequently, we obtain the following Monte Carlpragimation:

- 1 - N = = (r
PXe|Z) = Gp(ZefXe) x D0 p(Kef X)) @

Single Object 3D State and Model:We modeled people using general cylinders, as
illustrated in Fig. 3. Given the resolution of the images,deeided to use three cylin-
ders: one for the head, one for the torso, and one for the\égsised elliptic cylinders
(i.e. the section of the cylinder is an ellipse) to accoumtdeople ‘flatness’ (people
width is usually larger than their thickness), which allowsproduce different image
projected models depending on people’s orientations. Whetcamera. The state space
of a human personat timet is represented by a 6-dimensional vector:

.. T
Xit = (Tit, Yits Tists Uit Nigt, Cie) 3)

whereu; ; = (z;4,%:+) denotes the person ground plane position in the 3D physical
spaceiy; ; = (i, Uit) b anda; ; denote the speed, the height, and the orientation
w.r.t. the X -direction on the ground plane, respectively.

The Multi-Object State Spaceis defined as:
Xt = (Xtvkt)a (4)

whereX; = {X,;}i=1..m, M is the maximum number of objects appearing in the
scene at any given time instant, akd = {k;},=1...a is @ M-dimensional binary
vector. The boolean value ; signals whether the objectis valid/exists in the scene
at timet (k;,, = 1), or not (;; = 0). The identifier set of existing objects is thus
represented as; = {i € [1, M]|k;; = 1}, andK; = {1,2,3,..., M} \ K.

3.2 Dynamical Model
The dynamical model governs the evolution of the state betviene steps. It is respon-

sible for predicting the motion of people as well as modelirigr-personal interactions
between the various people.

The Joint Dynamical Model for a variable number of people is defined as follows:
~ o~ M
p(Xt|Xt71) X pO(Xt|kt) (Hi_lp(xi,t|xt1,kt7kt1)> p(kt|kt717xt71) (5)

p(Xi7t|Xi,t71) if 7¢ K andi € K:t,h
with p(X; ¢ [ X1, ke, k1) = ¢ poiren(Xig) if i € Ky andi ¢ Ky (birth),
Paeatn(Xi) 1f @ ¢ Ky andi € K,_;death)

The termp(X,; ;|X; :—1) denotes a single person dynamics, as discussed later, while
Drirth @Nd paeqrn, denote prior distributions over the state space for newbortead
objects. The last term(k;|k:—1, X;—1) in Eq. (5) allows to define a prior over the
number of objects which die and are born at a given time steys disfavoring for
instance the deletion of an object and its replacement byvéyreeated object.

Shape oriented and person avoidance interactions peogon interactions are modeled

by the the ternpg in Eq. (5) and defined by pairwise prior over floint state space:

po(Xelke) = H

ek iy Ot Ki) o oxp {_Ag Zz‘,jem,#j 9K, Xj’t)} ’
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Figure 2: Left images. Due to depth effects, very similar positions in the first camera view cor-
responds to dramatically different image locations on the other Raylat graph. for the same
scene, floor map of localization uncertainties, propagated from imagézation uncertainties.
In green, floor locations visible in both cameras. In blue/red, locatioitd&isy only one camera.

where g(X; ;, X, ;) is a penalty function. In papers [4, 6] which used such a prior
authors defined this penalty function based on the curremv2lap between the object
projections, or on the euclidian distance between the twecblzenters, for instance,
9(Xi, X)) = ¥(|lu;e —uj.]]). In our case, we propose two improvements: first, as
people are not ‘circular’, we replaced the above euclidistadce by a Mahalanobis
distance, i.eg, (X1, X;1) = ¥ (dp,i(Wiy — w;y))+v (dy j(w; — u;,)) whered,, ;
(resp.d,, ;) is the Mahalanobis distance defined by the ellipsoid shpigeoperson
(resp.j). Qualitatively, this term favors the alignment of peopléentation (of close

by people) in contrast to people with perpendicular origéoms. People following each
other is a typical situation where this term can be useful.

Secondly, when people move, they usually look forwardwoid collision with
other people. We thus introduced a prior as well on the §(£fgr1 predicted from the
current state valuX; ;, by defining the penalty function g$X,; ;, X, ;) = ¢,(Xi ¢, X,.¢)+
gp(X7 1, X5, ;). This term will thus prevent collision, not only when peoplee

. Jttl . . . ;
coming close, but also when people are moving together igdhee direction.

The Dynamical Model of a Single Persorns defined as:

p(Xi,t|Xi,t71) = p(ui,t;ui,t|ui,t71;ili,tfl)p(hi,t‘hi,tfl)p(ai,ﬂai,tflaili,t)7 (6)

where we have assumed that the evolution of state paranisterdependent given
the previous state values. In this equation, the height prib; ;|h; ,—1) assumes a
constant height model with a steady-state value, to avogeldeviations towards too
high or small values. The body orientation dynami¢s; ;| +—1, ;) is composed of
two terms which favor temporal smoothness and orientatignment with the walk-
ing speed (which depends on the speed magnitude) as we hewgbee in the single
person tracking algorithm [11].

In addition to prior terms which prevent invalid floor postts for people and reduce
the likelihood of the state when the walking speed exceedgeguedefined limit, the
position/speed dynamics is defined by

flt = Aﬁt_l + BWl,t and u = w1+ Tﬁt + C(ut—l)WQ,t (7)

wherew, ; = (wfft), wfl'ﬂ‘/))T is a Gaussian white noise random varialle<(1, 2), and
T is the time step between two frames. First assumeGHat;_;) = 0. In this case,
Eqg. (7) models a Langevin motion, with = oI andB = bI (I denotes the x 2
identity matrix) anch = exp(—g7) andb = vv/1 — a?, wheres accounts for the speed

damping and is the steady-state root-mean square speed.
Introducing 2D-to-3D localization uncertaintiés.multi-view environments with small
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overlapping regions between views, and important deptheseffects with large image
projection size variations of people within and across ei¢see Fig. 2), the Langevin
motion is not enough to represent the state dynamics umugrt&ig. 2 illustrates a
typical problem at view transitions: a person appearingsahall scale in a given view
enters a second view. Observations from the first view areffingent to accurately
localize the person on the 3D ground plane. Thus, when theopenters the second
view, the image projections obtained from the state prediadf the MCMC samples
will often results in a mismatch with the actual localizatiof the person in the sec-
ond view. This mismatch might be too high to be covered (in time step) by the
regular noise of the dynamical model. As a result, the allgorimay keep (for some
time) the person track so that it is only visible in the firstwj and create a second
track to account for the person’s presence in the second Vigwolve this issue, we
added the noise ter@(u;_;)ws ¢ on the location dynamics, whose covariance mag-
nitude and shape depend on the person location. The covarérthis noise, which
models 2D-to-3D localization uncertainties, is obtained@lows. The assumed 2D
Gaussian noises on the image localization of a person’stemt the different views
are propagated to the 3D floor position using an Unscenteasioem, and potentially
merged for people positions visible from several cameesslihg to the pre-computed
noise model illustrated in the right image of Fig.2. QuaiNely, this term guarantees
that in the MCMC process, state samples drawn from the dyesawill actually spread
the known uncertainty 3D regions, and those samples dravwexplpiting the human
detectors will not be disregarded as being too unlikely ediog to the dynamics.

3.3 Observation Model

When modelingo(Zt\Xt), which measures the likelihood of the observatifynfor a
given multi-object state configuratid¥,, it is crucial to be able to compare likelihoods
when the number of objects is changing. Thus, we paid greattogpropose a formu-
lation that provides likelihoods of similar orders of mauies for different number
of objects. For simplicity, we dropped the subsctijnt this section. Our observations
are defined a% = (1,,D,),=1..~,, Wherel, andD,, denotes the color and the back-
ground subtraction observations for each of Mjecamera views. More precisel),,

is a background distance map obtained from the backgrountdastion of [12], with
values between 0 and 1 where 0 means a perfect match with¢kgroand. Assuming
the conditional independence of the camera views, we have:

p(2X) = [ p(1/D, X)p(D, |X). ®)

These two terms are described below (where we dropped tiserdot for simplicity).

The Foreground Likelihood of one camera is modeled as:

X) — —Apg(1=D(x)) —XfgD(x) c1(D(x)—c2)
p(D|X) H exp ergexp 0<H exp 9)

xeS xXES

wherex denotes an image pixe$, denotes the object regions of the imagejenotes
its complement, as illustrated in Fig. 3, and= (A;y + Asy) @andca = Agg/ci. In
Eqg. (9), we can clearly notice that the number of terms ispedeent of the number
of objects, and that the placement (for track or birth) ofeatg will be encouraged in
regions wheréd(x) > cs.
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[ Non-Obiject Region § [ [ object Region S

Figure 3: Left: (a) the 3D human model consisting of three elliptic cylinders. (b) projectiohne
body model in the rectified image for different state valirRéght: Object and non-object regions.

The Color Likelihood in one camera is modeled as:
) 3 —Xim|Ri,p|De(I,D, R p) —Xim Dmin
p@D,X) = [T _ II,_ exp [I o
3 —Aim|Ri, b (De(IL,D,R; 5)—Dipin)
o< HieK Hb:l exp (10)

whereR,; ;, denotes, for an existing objectisible in the camera view, the image part of
its body regiorb which are not covered by other objects (see Fig. 3),|/&d | denotes
the area ofR; ;. The above expression provides a comparable likelihoodifterent
number of objects, and will favor the placement of trackej@cis at positions for which
the body region color distand®.(I,D, R, ;) is high, and favor the object existence if
this distance is (on average) higher than the expected ramidistanceD,,,;,, .

Obiject color representation and distarfeéem the visible part of the body regi@y, of

an object, we extract two color histogranks;, which uses only foreground pixels (i.e.
for whichD(x) > ¢,), andH,, which uses all pixels ifk;,. While the former should be
more accurate by avoiding pooling pixels from the backgdhtime latter one guarantees
that we will have enough observations. To efficiently ac¢donappearence variability
due to pose, lighting, resolution and camera view changespmwpose to represent
each object body region using a setfofautomatically learned reference histograms,
H = {H, }X_,. The color distance is then defined as:

Dc(1,D, Ry)= (1= ;) D (Hy, H) + Ay D, (hy, H) with Dy, (H, H) = min, Dy, (H, Hi)

whereD,,;, denotes the standard Bhattacharyya histogram distaneaufdating of the
reference histograms is conducted in a similar way to baekgt modeling methods
[12]: observed histograms (extracted from the mean objatt)sare matched against
the reference histograms and used to update the best mdiidtegram, or create a
new reference histogram if the best match is not close enough

3.4 Reversible-Jump MCMC

Given the high and variable dimensionality of our state sptw inference of the filter-
ing distributionp(X;|Z;.+) is conducted using a Reversible-Jump MCMC (RJ-MCMC)
sampling scheme which has been shown to be the very efficiexnuich cases [4-6]. In
RJ-MCMC, a Markov Chain is defined such that its stationasyritiution is equal to
the target distribution, Eq. (2) in our case. The Markov @haisampled using the
Metropolis-Hastings (MH) algorithm. Starting from an drary configuration, the al-
gorithm proceeds by repetitively selecting a move typ&om a set of move§™ with
prior probabilityp, and sampling a new configuratiaf, from a proposal distribution
qm(X}|X;). The move can either change the dimensionality of the statén(birth or
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Figure 4: Detection results at the same time instant in the 3 views.

death) or keep it fixed. Then, either the proposed configurésiadded with probability
(known asacceptance ratio)

X'\ Zy. X,: X!
0 = PXiZ1) X])ﬂan”f’(Nlt’Nt) (11)
p(XilZyy)  Pm gm(XXy)

to the Markov Chain, wherat is the reverse move ah, or the current configuration is
added otherwise. More details on defining typical moves anesponding acceptance
ratios can be found in [4]. In the following, we describe theves and proposals we
used and highlight the key points.

Human Detection: Good and accurate automatic track initialization is crifoiemulti-
object tracking, in particular since it is the phase wheeeitfitial object model (color
histograms) is extracted. In addition, being able to pre@axurate positions to update
current tracks is important. To this end, we have develop&draan person detec-
tor [13] which builds on the approach of Tuztlal. [14], and takes full advantage of
the correlation existing between the shapes of humanseégifound detection maps and
their appearance in the RGB images In multi-view calibraedronment, the detec-
tor was applied on each view separately, on windows i) wharhespond to plausible
people sizes; ii) for which the corresponding windows in difeer camera views (ob-
tained thanks to the calibration) all contained enough (Rf¥eground pixels. Note
that appart from this latter constraint, we did not try to geethe detection output in
the different views. The main reason is that such fusiondceediuce the number of de-
tection (e.g. as the object might be too small, occluded @myria a given image). Also
it appeared to be better to keep the best localizations in ebihe camera views when
initializing or updating track states in the MCMC trackinguinework. Fig. 4 provides
an example of obtained detections.

Move Proposals We have defined six move typesdd, delete stay, leave switch, and
update The proposal of each move type is defined as follows.

adddelete the add move uses the output of the human detector, and proposes-to ra
domly add one of the detected humans whose positions araedaga from the existing
objects in the current configuration (where the distancesiasured on the ground plane
using the uncertainty Mahalanobis distance, cf SectiomBFg. 2). Thedeletemove

is the reverse move of thedd move (reverse moves are required to potentially move
the chain back to a previous hypothesis). In this move, ¢bjebich have been added
with the addmove are randomly selected for being removed.

staylleave the add deletemoves enableew objects to enter the scene, and is driven by

a human detector. Thetay/leavemoves are the equivalent atid delete but allows to
decide on the fate of objects that were already present g@iréwéous time instant. The



10 Jian Yao Jean-Marc Odobez

Figure 5: Tracking results on the metro scene.

leavemove allows to remove one such object from the current cordtgn, while the
stayallows to bring it back, by sampling from the state dynamifs [

switch: This move allows to randomly exchange states between tipsbjects, which
in practice allows to check whether the exchange of coloretwetter fits the data.
update This is an important move which allows to find good estimatedlie object

states. It works by first randomly selecting a valid objgdirom the current joint con-
figuration (i.e. for whichk;- , = 1), and then propose a new state for update. This new
state is drawn in two ways (i.e the proposal is a mixture)hinfirst case, the object po-
sition, height and orientation are locally perturbed adoway to a Gaussian kernel [4].
Importantly, in order to propose interesting state valbes may have a visual impact,
the noise covariance in position is definedsi;- ) = C(u;<)C T (u;- ), whereC(u;-)

is the noise matrix in Eq. (7) which is used to define the nois@dance in Fig. 2. The
second way is to update the object location by sampling thheloeation around one of
the positions provided by the human detector which are doseigh from the selected
objecti*. Here again, closeness is defined by exploitifigy;- ), and the perturbation
covariance around the selected detection is give& by, ).

4 Experimental Results

Two datasets captured from two different scenes were usedaoate our proposed
multi-person tracking system. The first one consists oR2Ie80 minutes video footage
captured by three wide-baseline cameras in the Torino nsé&dtmn scene as shown in
Fig. 4. These sequences are very challenging, due to thergarissv points (small

average people size and large people size variations inea giew, occlusion, partial

field of view overlap), crowded scenes in front of the gatesl, the presence of many
specular reflections on the ground which in combination wibkt shadows generate
many background subtraction false alarms. In addition,trpesple are dressed with
similar colors. The second dataset comprises 10 minuteislebyootage also captured
by three wide-baseline cameras in an outdoor scene. Indéiges people often appear
slanted in the left or/and right borders of an image (seeBigrhe camera view point
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Figure 6: Tracking results on the metro scene: (a) without integrating the groume [plaise
model in dynamical model; (b) with integration.

issues mentioned above for the metro scene also exist indtdsor scene. The follow-
ing experiments were obtained using a total of 1500 movesamiRiJ-MCMC sampling
with 500 in the burn-in phase.

Fig. 5 shows some tracking results on the first dataset. snetkample,our tracking
system performed very well, successfully adding peoplegigie human detector me-
diated birth move, and efficiently handling inter-personlosion and partial visibility
between camera views.

The benefit of using the 2D-to-3D ground plane noise in ouoriigm, and espe-
cially in the dynamics, is illustrated in a simple exampla. . In the first two rows,
this component was not used, i@®(u) = 0 in Eq. (7). As can be seen, the estimated
state from the first view lags a little bit behind, resultingiimismatch when the tracked
person enters the second view. As a consequence, a newiglyjesated. The first track
stays for some time, and is then removed, resulting alltegenh a track break. On the
other hand, when using the proposed term, the transitiomdsst cameras is success-
fully handled by the algorithm, as shown in Fig. 6(b).

On the second dataset, our approach performed very weli,alitost no tracking
errors in the 10-minute sequences. Results on four frangeshewn in Fig. 7. Anec-
todically, our human detector was able to successfullyadet@erson on a bicycle and
our tracking system was able to track him/it robustly.

5 Conclusions

In this paper, we presented a novel multi-camera multiggeBD tracking algorithm.
The strength of the approach relies on several key factoegoint multi-state Bayesian
formulation, appropriate interaction models using sfaediction to model collision
avoidance, the RJ-MCMC inference sampling scheme, andhaédihced observation
models. The use of a fast and powerful human detector pravbd essential for good
track initialization and state update, as was the use ofgfireel 2D to 3D geometric
uncertainty measures on the state dynamics. In additiomyval isimple rectification
scheme was proposed to remove people slant from imageslendlaé¢ use of efficient
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Frame 197 Frame 973 Frame 1267 Frame 1288

Figure 7: Example of multi-preson tracking on the outdoor sequence.

human detector and feature extraction based on integrgem#&uture work is oriented
towards the definition of more powerful learned object likebd models, esp. to handle
partial occlusion, on the use of longer term constraintsherdiynamics.
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