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ABSTRACT we focus our study on a more generalised approach to event
The recognition of events in video data is a subject of much detection in video data.
current interest. In this paper, we address several isgdes r
lated to this topic. The first one is overfitting when very 1.1. Temporal sequence modelling
large feature spaces are used and relatively small amotints cOne of the most common methods of modelling tempo-
training data are available. The second is the use of a frame+al sequences ididden Markov Models (HMMs) these are
work that can recognise events at different time scales, asstochastic models with a discrete state space that can be
standard Hidden Markov Model (HMM) do not model well trained using th&xpectation Maximisation (EM) algorithm [1].
long-term term temporal dependencies in the data. In thisAn HMM can be defined by probability distributions; the
paper we propose a method combining Layered HMMs andfirst P(¢:—1 = j|g:—1), wheregq;_; is the state at time
an unsupervised low level clustering of the features to ad-t — 1, governs the transitions between states. The second
dress these issues. Experiments conducted on the recogniP(z:|q: = i), wherex, is the observation data at tinigis
tion task of different events in 7 rugby games demonstratesthe probability of the data given the current state. HMMs
the potential of our approach with respect to standard HMM have been successfully used in many different applications
techniques coupled with a feature size reduction technique such as speech recognition, gene sequencing and gesture
While the current focus of this work is on events in sports recognition. In general video processing tasks HMMs have
videos, we believe the techniques shown here are generabeen used with audio and video features in a scene clas-

enough to be applied to other sources of data. sification task [2] and a video shot segmentation task [3].
Mccowanet al describe using various HMM topologies for
1. INTRODUCTION recognition of events in meetings using audio-video ddta [4

] ) . _In the specific area of sports video processing HMMs have
With the recent growth in the amount of archive material paen used to recognise events in basketball [5]. A good in-

there is a real need for systems capable of automatic contenf,qqction to HMMs can be found in [1] and a thorough de-
analysis and knc_JwIedge_ extraction. These systems WO_UIdscription of HMMSs and their various extensions is available
allow for structuring of video material in order to have effi- ;, [6]. While HMMs provide a good method of modelling

cient sggrching apd retrieval qfinformation. The problefm O temporal sequences they do suffer from overfitting when
recognising particular events in video data pertains toyman ¢5.ed with a large number of parameters, long and complex

different areas, such as news and sports broadcasts, videymnoral sequences and relatively small amounts of train-

surveillance and meeting annotation. Event recognition in ing data. HMMs also have difficulty modelling long term
video presents a number of significant problems. temporal relations in data. This is due to the state tramsiti

_Firstly we have the problem of modelling temporal re- gistribution which obeys the Markov assumption where the
lations over a number of different time scales. For instance current state only depends on the the previous state.

as well as modelling relations from one frame to the next we
may also want to model the relations between longer term 2 OUR APPROACH
shots and events. Feature extraction and selection is a sec- ) ) )
ond problem in video processing. Often, the recognition of N @n effort to model long term relations in the data Hier-
a particular event in this domain is better addressed by de-archical HMMs (HHMMs) have been proposed [7]. These
signing a highly specialised feature extractor. In thisgrap ~ USe HMMS at d|fferentllevels in order to model data on dif-
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the EU-IST project LAVA MMs is still large, they suffer from the problem of overfit-




ting and needing large amounts of training data. To reduceto find the optimal solution. The overall goal in the cluster-
the size of the parameter space and increase the robustnessg segmentation is to find the optimal number of clusters
to overfitting Layered HMMs were introduced [9]. Lay- such that
ered HMMs can be seen as a variant of HHMMs, where b= arg max p(D, qpest| k), 1)
each layer is trained independantly and the inferential re- k
sults from the lower layer are used as data to train the layerwhere isg,.., the path of the Viterbi decoding for which the
above. While less powerful at modeling long term tempo- maximum data likelihood. Starting with an over-segmenotati
ral relationships than HHMMs, Layered HMMs offer away of the dataX, clusters are successively merged by replac-
of reducing the dependency of training with respect to the ing models),, andM, by the modelV/, ., if the following
input feature space. criteria applies
In this paper we propose a method using a Layered HMM
to address the problems of modelling different time scales. log p(Dgtb|0a+s) > log p(Dalbs) + logp(Ds|60y), (2)
In combination with this we propose to use unsupervised
clustering of the data to address the problem of feature sewhereD,,, = D, U D, andf,;, are the parameters fit-
lection and dimension reduction in video data. The first ting D,4+,. This criteria ensures an increase of the overall
layer of the Layered HMM, the Feature HMM (F-HMM) is  likelihood. An important point to note is that in this al-
used to produce a posterior probability for each of the mid- gorithm [11] the complexity of the merged mod#, ., is
level clusters at each timein the sequence. This layer is kept similar to that of the sum of the individual onk% and
built by using an unsupervised clustering and segmentationM; by letting N, = N, + N;. This avoids the need to
of the training data, this is described in section 2.1. model the complexity of the models using BIC criteria for
These probabilities are then used as features for the secinstance.
ond layer of the Layered HMM. This second layer is trained
using the output of the first layer. This is supervised trani 2.2, Connecting Layersin an Layered HMM
using the higher level events we want to recognise. So the
higher level Event HMM (E-HMM) produces a probability
of a higher level event at each time An overview of this
system can be seen in Figure 1.

One of the issues in Layered HMM modeling is how to con-
nect one layer of the model to the next, that is what out-
put of a layer can be used as an input feature to its higher
layer. Here we will discuss the approach that has been taken

We would like to use the F-HMM to perform a dimen- ; . . )
. . . o this problem. We define an observation sequence as:
sion reduction of the feature space and so give more robus T o .
X =21 = {x1,22,...,27}, Wheret is time andT is

recognition in the higher level E-HMM. One problem we
. . ; . the length of the sequence.
have is that there may be no obvious semantic decompostion In the EM algorithm the forward variable is defined
f the higher level video events we are trying to recognise. o .
oF tne higher ying g sa(i,t) = P(z},q = 1), this is the probability of hav-

This can be contrasted with decomposing group actions in® ted th t ob i d being i
meetings into the individual actions of each person [10] or Ing generated the past observation sequence and being In

. . h . h o _statez‘ at timet. The backvyar_d variablg is.(;iefined as
decomposing words into phonemes in speech recognition (i) = P(:EtTH\qt _ i), this is the probability that the

In our case we use an unsupervised clustering of the dataﬁ‘t b i ilb ted aiven that w
and then use this segmentation as a reduced mid-level set 0 ure observation sequence will be generated given that we

features which can then be used for event recognition. are in stater at t'm?t' We_ al_so define the_\_/arlabrg as
~v(i,t) = P(q = i|X), this is the probability of being

) i in state; at timet given the entire observation sequence

2.1. Unsupervised clustering X [1].
Here our goal is to segment the training d&tanto differ- In the original proposal for Layered HMMs by Oliver,
ent clusters. A cluster is represented by an HMM model Horitz and Garg [9] the layers are connected by using the
M;. M; is a simple HMM with a single emitting state re- value P(q; = i|z;) from the previous level as the obser-
peated several times to enforce a minimum duration con-vations for the next level. However recent work [10] has
straint. The emission probability of that state is a Gaussia shown that a more principled and robust method of linking
Mixture Model with N; mixtures and parametets. The the layers of an Layered HMM is to use the valBé;; =
segments of data belonging to the clustare denoted by  i|z!). Performance was further improved by the use of the
D;. As with standard clusteringy and D; are related more  posterior probabilityy. This approach has also recently
specifically,f; are the parameters that fit the temporal data been applied with success to speech recognition [12]. Here
D;, while theD;’s can be computed from the dafsand the we will use the values of to link the two layers of the Lay-
parameterd;’s using the standard HMM Viterbi decoding ered HMM. This should provide a more accurate measure
technique. of the probability of the mid-level clusters as it uses all of

We use the following hierarchical clustering algorithm]11the dataX{ as opposed ta which is calculated using only



‘Motion Feature% ‘ Texture Featl.*res ‘ Colour Feat} angle close up, person in a close up, long shot, miscella-
neous. Secondly, we have play events: play, nonplay and
\ex{X ymot}} Kiewt Xeol replay. Lastly action events that are specific to the partic-
E@ E@ E@ ular sport we are looking at. These events are dictated by
the form and the rules of the selected sport. In our work,
P P for rugby we defined: running and passing, maul, line-out,
cmot v Ceol kick, penalty, scrum and try.
| | | In the following experiments we have made no assump-
tions about any heirarchy in these sets of events. Currently
we treat these as three separate and independant annetation
( E-HMM ] pf the same data, though in future work we will consider the
! interactions between them.

Pmerge = {Pcm'ot ) Pctezt’ Pccol}

Peyent = P(E = €|Prmerge)
3.2. Features
Fig. 1. The proposed system with the F-HMM produc- The motion features used in our experiments characterise
ing probabilities of the unsupervised clusters for eactadat the dominant motion model over the entire image field of
stream and the E-HMM giving the probability of events. ~ View [13]. In the texture case, the image is divided into
20 equal rectangles and then an edge direction histogram
the past observation sequendg, This method does, how- for each region is calculated. The colour feature, are based
ever, require batch processing as the entire sequence musin a playfield segmentation algorithm developed in previ-
be processed by the F-HMM before data is available to theous work [14] and consists of the percentage of playfield in
E-HMM. each of the 20 regions of the image. The size of the fea-
ture vectors for motion, texture and colour are 9, 63 and 20

2.3. System Overview respectively.

The event recognition system we propose consists of an .
Layered HMM with two layers, a feature level HMM, F- 3.3. Datasets qnd evaluation !orotocol )
HMM, and an event level HMM, E-HMM. In this system we The data used in these experiments consists of 7 half games

use three sets of video features: motion, texture and colour©f @PProximately 45 to 50 minutes. We divided this data
@t = {Tmot.t, Trest.ts Teole }. AN Unsupervised clustering into two sets, one for training and validation (five games)
using the algorithm described above is then applied sepa-2nd the other for testing (two games). This data was then
rately on each feature set. We enforce a minimum duration@nnotated by hand with the high level structural, play and

of one second on the cluster segments. This gives us a sefclion events.

of clusters for each feature set, with corresponding models Ve tested the performance of our method against us-
for motion M,,,;, texture M,.,; and colourM..;. The F- ing the raw features and also against a common method of

HMM layer then produces a posterior probabilityt) for dimension reductioRrinciple Component Analysis (PCA).
each of these models at each timéor each of the fea- YUsing PCA we reduced the size of the original feature vec-

ture streams. This produces the following streams of prob-tor from 92 to 37 with these 37 features still accounting for

abilities: P, = {P(cL., = c|Xmot), . P(CNmot _ 90% of the variance in the original data. Using the unsuper-

X o)} fo;%onon and st;lmllarIyPc for tex'zfl(;te and  Vised clustering we reduced the final feature vector size in

Pe T olour. rewt the proposed LHMM system to 35. We trained all four mod-
L

In the second stage the probability sets produced by eactf!S: HMM' HMM-PCA, HMM-PCA-R and LHMM with
F-HMM are merged into a single high level feature set. This clustering, on the annotated data and then adjusted the word

is then used as input to the E-HMM, which is trained using ' insertion penalty and the minimum duration using the train-

the supervised annotation of higher level semantic events. "9 Set. All models were trained with a single state and 20
gaussian mixtures.

In the results we present we have used the frame recog-
3. EXPERIMENTS nition rate as a measure of performance for the play and
structural events. This is given by dividing the number of
frames correctly classified by the total number of frames
We have selected three types of events we would like totested. In the case of action events, however, as the events
recognise in rugby videos. The first are structural eventsare very unbalanced we want to report performance based
which are common to many sports video material and de- on event recognition rather than frame recognition. We thus
scribe the type of shot: medium shot and medium shot low introduce a new measure based on the edit distance between

3.1. Events



the groundtruth sequence and the recognised sequence witthe reduction in the feature space size the traditional HMM
an added constraint that in order to match the events musimodels still show signs of overfitting.

Tables 4 and 5 provide the macro average (the average
then calculated based on the alignment by the edit distanceof recall and precision computer per class) and the micro
average (the average weighted by class size). They con-
firm that the Layered HMM is performing better. However
the rates appear to be quite poor with approximately half
of the events recognised. Better results may have been ob-
tained by specifically tailoring features for this applioat
Finally these result are very encouraging we believe their
is potential for exploiting the ability of Layered HMM to
model events on different time scales in order to further im-
prove the results .

co-occur in time. The event based precision and recall are

optimisation. Precision is given b¥..,./E... and recall
by Ecorr/Eground, WhereE,,,, is the number of correctly
recognised eventsy,.. is the total number of recognised
events andE, .4 is the total number of events in the
groundtruth.

3.4. Resultsand discussion

Method Training set| Test set
HMM 0.83 0.40
HMM-PCA 0.80 0.59
HMM-PCA-R 0.82 0.57
Layered HMM 0.76 0.67

Table 1. Frame recognition rate for structural events.

Method Training set| Test set
HMM 0.78 0.70
HMM-PCA 0.77 0.70
HMM-PCA-R 0.76 0.67
Layered HMM 0.79 0.79

Table 2. Frame recognition rate for play events.

Method Training set| Test set
HMM 0.70 0.69
HMM-PCA 0.68 0.55
HMM-PCA-R 0.69 0.57
Layered HMM 0.73 0.74

Table 3. Frame recognition rate for action events.

Method Micro average| Macro average,
Rec | Prec | Rec | Prec
HMM 040| 047 | 0.18| 0.28
HMM-PCA 0.37| 056 | 0.36| 0.49
HMM-PCA-R || 0.26 | 0.58 | 0.20| 0.45
Layered HMM || 0.52 | 0.69 | 0.41| 0.49

Table 4. Micro and macro precision and recall rates for

action events.
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It can be seen from the results that the proposed tech- [12]

nigue offers clear improvements for all three classes dfitsve

The robustness of the our method can be seen by comparing

the frame recognition rates on the training and the testthg s

(23]

in Tables 1, 2 and 3. It is clear in many cases that standard

HMM approach is prone to overfitting in this task, and that
our method is clearly a more robust form of feature space re- [14

fln.r]

duction than the standard PCA approach. Indeed even with
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