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ABSTRACT

Automatic meeting analysis is an emerging research field. In
this paper, we present stochastic algorithms for tracking people
in multi-sensor meeting rooms, for a number of relevant tasks,
including tracking multiple people, tracking head pose towards
analysis of visual focus-of-attention, and tracking speaker activ-
ity using audio-visual information. A Bayesian framework based
on Sequential Monte Carlo methods is used in all cases. We dis-
cuss the advantages and limitations of our approach, illustrate it
with results, and highlight a number of open issues.

1. INTRODUCTION

The automatic analysis of human interaction constitutes a rich re-
search field. In particular, meetings exemplify the multimodal
nature of human communication, and the complex patterns that
emerge from the interaction between multiple people [10]. In view
of the amount of relevant information in meetings suitable for au-
tomatic extraction, this domain has attracted attention in fields
spanning computer vision, speech processing, human-computer
interaction, and information retrieval [16].

Localizing and tracking people play important roles in meet-
ing analysis. As a data source, meetings recorded in multi-sensor
rooms consist of unedited streams of audio and video, captured
with multiple cameras and microphones covering participants and
workspace areas. In such setups, tracking is useful to determine the
number and location of participants, to provide accumulated infor-
mation for person identification, to select a fixed camera or to steer
a motorized one as part of a visualization or production model, to
enhance the audio stream for speech recognition using microphone
arrays, and to provide cues for detection of location-based events.
In all of these cases, the availability of multiple views and modal-
ities represents an advantage.

Tracking people and their activity is also relevant for higher-
level multimodal tasks that relate to the communicative goal of
meetings. Experimental evidence in social psychology has high-
lighted the role of non-verbal behavior (e.g. gaze and facial ex-
pressions) in interactions [12], and the power of speaker turn pat-
terns to capture information about the behavior of a group and its
members [10, 12]. Identifying such multimodal behaviors requires
reliable people tracking.

In this paper, we discuss algorithms to track people in meet-
ings using a consistent Bayesian framework, namely sequential
Monte Carlo (SMC) methods or particle filters (PF). SMC methods
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approximate the Bayesian solution to the tracking problem using
sampling techniques, and have gained popularity in recent years
to deal with non-linear and non-Gaussian state-space models, due
to their versatility, ease of implementation, and success in chal-
lenging applications. We present PFs to track multiple interacting
people, with occlusion as the typical problem in meeting rooms,
to track location and head pose, as a surrogate for gaze, and to
track location and speaking activity using audio-visual data. While
the SMC formulation is general, each of the addressed problems
pose specific challenges, and call for a number of specific choices.
We highlight each of them in the following sections. Our work is
an ongoing effort towards building probabilistic models of multi-
modal human interaction.

The paper is organized as follows. Section 2 summarizes the
SMC framework. Section 3 briefly describes our multi-sensor meet-
ing room. Section 4 describes our work on multi-object visual
tracking. Section 5 describes our progress on head-pose tracking.
Section 6 presents our work on audio-visual tracking. Videos with
results for all sections can be found in the paper’s companion web-
site [17]. Section 7 provides some final remarks.

2. SEQUENTIAL MONTE CARLO FRAMEWORK

The Bayesian formulation of the tracking problem is well known.
Denoting by Xt the hidden state representing the object configura-
tion at time t, and by Yt the observation extracted from the image,
the filtering distribution p(Xt|Y1:t) of Xt given all the observa-
tions Y1:t = (Y1 . . . Yt) up to the current time can be recursively
computed by [3]:

p(Xt|Y1:t) = Z
−1

p(Yt|Xt) ×Z

Xt−1

p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1 (1)

where Z is a normalizing constant. A PF is a numerical approxi-
mation to the above recursion in the case of non-linear and non-
Gaussian models. The basic idea behind PF consists of repre-
senting the filtering distribution using a weighted set of samples
{Xn

t , wn
t }

Ns
n=1, and updating this representation as new data ar-

rives. With this representation, Eq. 1 can be approximated by :

p(Xt|Y1:t) ≈ Z
−1

p(Yt|Xt)

Ns
X

n=1

w
n
t−1p(Xt|X

n
t−1) (2)

using importance sampling. Given the particle set at the previous
time step {Xn

t−1, w
n
t−1}, configurations at the current time step are

drawn from a proposal distribution q(Xt) =
P

n
wn

t−1p(Xt|X
n
t−1).

The weights are then computed as wn
t ∝ p(Yt|X

n
t ).

Four elements are important in defining a PF:
1. The state space. We use mixed-spaces, where the state

is the conjunction of continuous variables specifying the spatial
object configuration (e.g. position, scale) and discrete variables
labeling the object state (e.g. whether a person is occluded or not).
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Figure 1: Multi-sensor meeting room configuration.

2. The dynamical model p(Xt|Xt−1) defines the temporal
evolution of the state.

3. The observation likelihood p(Yt|Xt) measures the ade-
quacy between the observation and the state.

4. The sampling mechanism places new samples as close as
possible to regions of high likelihood.

These elements, along with specific issues and proposed solu-
tions, will be described in each of the following three sections.

3. MULTI-SENSOR MEETING ROOM

Our algorithms are tested on data captured in a 8.2m×3.6m×2.4m
meeting room containing a 4.8m×1.2m rectangular meeting table,
and equipped with fully synchronized video and audio capture de-
vices. The video equipment includes three identical CCTV cam-
eras [11]. Two cameras on opposite walls record frontal views
of participants, including the table and workspace area, and have
non-overlapping fields-of-view (FOVs). A third wide-view cam-
era looks over the top of the participants towards the white-board
and projector screen. Sample images can be seen in the follow-
ing sections. The audio equipment consists of an eight-element
circular equi-spaced microphone array centered on the table, with
diameter 20cm, and composed of high quality miniature electret
microphones. A diagram in shown in Fig. 1.

4. TRACKING MULTIPLE PEOPLE

Challenges. The long-term, reliable tracking of multiple people
in meetings is a challenging task. Meeting rooms pose a number
of issues for visual tracking including occlusion, clutter, variation
of illumination, and variation of appearance arising from changing
pose. On the other hand, multi-sensor meeting rooms offer some
unique advantages that ease the task of tracking. These can in-
clude constraints on the working space and group dynamics, and
redundancies in video data from cameras with overlapping FOVs.

Our approach. We define a joint multi-object state space,
which constitutes a rigorous implementation of the problem. The
state Xt contains the configuration for every person in the scene
Xt = (x1,t, ..., xM,t), where M denotes the number of people,
and xi,t contains translation and scaling parameters for person i.

Tracking a significant number of objects in a joint-object frame-
work becomes increasingly difficult as adding new objects to the
scene increases the search space exponentially. A sampling strat-
egy known as Partitioned Sampling (PS) [9] helps reduce the di-
mensionality problem by handling one object at a time, but intro-
duces problems with bias and impoverishment of the particle rep-

seq PF PS PS PS DPS
(1 → 2 → 3) (2 → 3 → 1) (3 → 1 → 2)

1 32 18 40 34 100
2 10 0 12 0 78

Table 1: Tracking success rate for an occluded object for different
sampling methods on two meeting room data sequences. For PS,
the numbers correspond to different object orderings.

resentation, dependent on the object ordering. We propose sam-
pling using Distributed Partitioned Sampling (DPS), which rede-
fines the distribution as a mixture model composed of subsets of
particles, each of which performs PS in a different ordering [15].
In DPS, we re-express Eq. 1 as

p(Xt|Y1:t) =

C
X

c=1

πc,t pc(Xt|Y1:t) (3)

where pc is a mixture component and c = 1, ..., C is the subset
index. PS is performed using a different ordering for each subset to
fairly distribute the bias and impoverishment effects between each
object. The subsets are then reassembled and evaluated normally.

The observation model used in this work consisted of 8-bin
color-space (HS) histograms with spatial components [13]. The
resulting multi-dimensional histogram consists of a concatenation
of 2-D HS histograms, each built from pixels taken from different
areas of the head (eyes, mouth, hair, etc) according to a template.
The observation likelihood is defined as p(Yt|Xt) =

Q

i
p(Yi,t|xi,t),

where Yi,t is the image region enclosed by xi,t, and each object

likelihood is defined as p(Yi,t|xi,t) ∝ e−λd2

i (Yi,t) where λ is a
hyper-parameter and di(Yi,t) is the distance based on the Bhat-
tacharyya coefficient between the observation Yi,t and the specific
object template histogram.

Results. Head tracking experiments were conducted in the
meeting room to test the ability of DPS to overcome impoverish-
ment problems associated with PS. Specifically, DPS and PS were
tested for their ability to recover from occlusion (impoverishment
hinders this ability) over 50 runs per method, to account for the
stochastic nature of the tracker, with NS = 200 particles. Per-
formance is measured by the success rate (SR), the percentage of
successful runs (a successful run occurs when the tracking esti-
mate overlaps the ground truth throughout the entire sequence).
As seen in Table 1, DPS signficantly outperformed both a simple
multi-object PF (denoted by PF) and a PS tracker. Some results
can be seen in Fig. 2 and [17].

Figure 2: Tracking multiple heads through occlusion with DPS
sampling in the multi-sensor meeting room.

Open issues. Some relevant issues currently being pursued in-
clude alternative sampling strategies, and handling variable num-
bers of objects, including automatic initialization.

5. TRACKING HEAD POSE

Challenges. Head pose estimation is often used as a first step
for other higher level tasks such as facial expression recognition



or gaze direction estimation. In meetings, head pose can be rea-
sonably used as a proxy for gaze (which usually calls for close
views), and can thus be useful for determination of visual focus-
of-attention and addressees in conversations. Most of the existing
work for head tracking and pose estimation defines the task as two
sequential and separate problems: the head is tracked, its location
is extracted, and the head pose is estimated from the head location.
As a consequence, the estimated head pose totally depends on the
tracking accuracy. This formulation misses the fact that knowledge
about head pose could be used to improve head modeling and thus
improve tracking accuracy.

Our approach. We couple head tracking and pose estimation
using a mixed-state PF [1]. The state Xt = (xt, lt) is a mixed
variable. The continuous variable x = (T, s) specifies the head
location and scale. The discrete variable l specifies an element of
the head pose exemplars set. The pose at given time is obtained
by marginalizing over the spatial configuration part of the state. In
the following paragraph, we describe the head pose models, the
dynamical model, and the observation model.

Head pose exemplars are learned using the PIE database. A
total of Nθ head poses are defined by a pan angle ranging from -
90 to 90 degrees discretized with 22.5-degree steps. For each head
pose θ, Gaussian and Gabor features are extracted from training
images, concatenated into a single feature vector, and clustered
with K-means into Lθ clusters {eθ

l = (eθ
l,j), l ∈ Lθ}, |Lθ| = Lθ .

The cluster centers are taken to be the head pose exemplars. The
number of elements of each cluster are used to define prior dis-
tributions πθ

l , and the diagonal covariance matrix of the features
σθ

l = diag((σθ
l,j)) is used to define pose probability models. The

pose of an head image is estimated by extracting its feature vec-
tor Y = (Yj), and finding the pose MAP estimate by p(Y |θ) =
P

l∈Lθ
πθ

l p(Y |l), with

p(Y |l) =
Y

j

1

σθ
l,j

max(exp−
1

2

 

Yj − eθ
l,j

σθ
l,j

!2

, T ) (4)

where T is a bound introduced to tolerate modeling errors.
The dynamical model is a second order autoregressive process

p(Xt|Xt−1, Xt−2). Assuming that the two components xt and lt
are independent, and that head pose depends only on the previous
pose give, the dynamics factorize as p(xt|xt−1, xt−2)p(lt|lt−1).

Finally, the observations are obtained by extracting the fea-
tures Y (x) from the image region specified by the spatial config-
uration x. The observation likelihood is given by p(Yt|Xt) =
pT (Yt(xt)|lt), with pT defined in Eq. 4.

Results. Head pose estimation was tested on PIE database.
The best result was obtained with two exemplars per pose, with a
recognition rate of 94.8% while the state-of-the-art obtains around
90% [2]. More details about evaluation can be found in [1]. The
joint tracking algorithm was also tested on video sequences from
our meeting room. An example with NS = 100 particles is shown
in Fig. 3. Tracking and head pose estimation are visually quite sat-
isfactory. Other results can be found to our website [17]. However,
in view of the limitations of visual evaluation, and the inaccuracy
obtained by manually labeling head pose in real videos, we have
recently recorded a set of meetings with four participants, with
head pose ground truth produced by a flock-of-birds device. An
objective evaluation of our algorithm is in process.

Open issues. The current features are obtained using gray-
level information. While our head tracking and pose estimation
system works well in general, some problems might occur when
the background is highly textured. The use of color information
for more robust tracking is under investigation.

Figure 3: Joint tracking and head pose estimation in meeting room.
The green box and red arrow specify the estimated head location
and head pose, respectively. The red circle gives information about
the pose value; its radius corresponds to 90 degrees. The partici-
pants are looking at the room entrance.

6. TRACKING SPEAKERS

Challenges. Sound and visual information are jointly gener-
ated when people speak, and provide complementary advantages.
Initialization and recovery from failures are tasks for which au-
dio is convenient; precise localization is better suited for vision.
In addition to the problems for visual tracking described in previ-
ous sections, the challenge on the audio side is to detect individual
speaker turns over time. This is a difficult task in spontaneous
multi-party speech, since the various speakers often talk for very
short durations and overlap significantly [14]. Speaker turns are
therefore highly dynamical and often concurrent temporal events.

Our approach. We use an approach in which a person’s head
is represented by its silhouette in the image plane. In one formu-
lation, the state-space is defined over only one person, the target
being the current speaker at each instant, in single- or multi-camera
setups [4]. In the second formulation, states are defined as a joint
multi-object representation, where both the location and the speak-
ing activity of each participant are tracked [5]. In both cases, we
employ mixed-states. In addition to continuous variables for head
motion, discrete variables are included to model speaker switching
across cameras in the single-object case, and to model the speaking
status of each participant in the multi-object case.

Our methodology exploits the complementary features of the
AV modalities, taking advantage of the fact that data fusion can be
introduced in both the sampling and the measuring stages of a PF.
In [4], we asymmetrically handle audio and video. Audio localiza-
tion information in 3-D space is first estimated by an algorithm that
reliably detects speaker changes with low latency, while maintain-
ing good estimation accuracy. Audio and skin-color blob informa-
tion are then used for prediction, and introduced in the PF via im-
portance sampling, a technique which guides the search process of
the PF towards regions of the state space likely to contain the true
configurations. Additionally, audio, color, and shape information
are jointly used in the observation likelihood. We also use an AV
calibration procedure to relate audio estimates in 3-D and visual
information in 2-D. The procedure uses easily generated training
data, and does not require precise geometric calibration of cam-
eras and microphones. In [5], we have dealt with the dimension-
ality of the multi-object state space by combining Markov Chain
Monte Carlo (MCMC) and PF, which provides efficient sampling
in a formalism that is naturally suitable for interaction modeling.

Results. On real data, the audio source localization system
provided the direction of the active speaker within a decent but not
too precise (±6o) margin. Range estimation is not reliable. On
the other hand, audio source detection is quite precise, with a false
alarm rate of only 1.6%, for a false rejection rate of 23.4% (details
in [4]). For the single-object case, our tracking framework can
initialize and track a moving speaker, and switch between multi-
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Figure 4: (a) Single-object speaker tracker in the meeting room.
The tracker locks onto the speaker. (b) Multi-object speaker
tracker. Both location and speaking status (double ellipse if a per-
son speaks) are inferred for each participant.

method SR Fx Fs

PF 78.8 0.85 0.59
MCMC 100.0 0.88 0.75

Table 2: Tracking success rate, and F-measures for location (Fx)
and speaking status (Fs), averaged over the four objects in the
meeting video sequence (initial 1715 frames). PF denotes a ba-
sic PF multi-object tracker. MCMC denotes the approach in [5].

ple people across cameras with low delay, while tolerating mod-
erate visual clutter. An example is shown in Fig. 4(a), for a two-
minute sequence, using NS = 500 particles. Given a ground-truth
of speaker segments, camera index and speaker head location, an
objective evaluation procedure showed that the error on the esti-
mated camera indices is small for the close-view cameras (< 2%),
but much larger for the wide-view case (25%), due to the larger
distance of the speaker at the whiteboeard compared to the seated
participants. The localization error in the image plane also remains
small. For the multi-object case, an example using NS = 500
particles is shown in Fig. 4(b). After manual initialization, the
four participants are simultaneously tracked, and their speaking
status is inferred at each time. An objective evaluation procedure
involves the computation for each participant of the success rate
measure mentioned in Section 4, and the F-measure (which com-
bines precision and recall) for location and speaking status, over a
number of runs of the trackers. Results for the first 1715 frames
are shown in Table 2, comparing the proposed method with a ba-
sic multi-object PF over 20 runs. They show that MCMC sampling
outperforms the basic PF in both ability to track and estimation of
the speaking status. Other examples can be found in [17].

Open issues. Our audio observation model can already reflect
activity from multiple people at the same time [6]. However, it is
based on a limiting single-audio-source assumption. We are cur-
rently developing truly multi-speaker detection techniques with a
sector-based approach [8], and plan to integrate them in the SMC
framework. We also plan to improve the multi-object speaker
tracker for automatic initialization, and to deal with a multi-camera
scenario with overlapping fields of view. Finally, an audio-visual
corpus for the localization and tracking tasks has been collected,
and its annotation is in progress [7].

7. CONCLUSION

We presented three different algorithms for people tracking in multi-
sensor meeting environments, each focusing on a specific task.
They all rely on a Bayesian framework implemented via SMC, and
produced good results. While the improvement of each algorithm

constitutes a research topic in itself, the integration of all of them
into a unique process, which we are targeting, raises some impor-
tant issues. For instance, as meeting participants often look at the
current speaker, head orientation and speaker localization are two
correlated processes. Hence, jointly performing both tasks could
lead to performance gain w.r.t. a sequential system first performing
multiple people tracking and speaker identification, and then head
pose estimation. However, in practice, the significance of such a
gain has to be balanced against other considerations, such as the
complexity of an integrated system, and the difficulties in model-
ing and learning the interactions. These issues also apply to the
recognition of other high-level processes, like focus-of-attention,
person behavior, or group actions. In these cases, the use of lay-
ered approaches might be an appropriate alternative.
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