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Finding Structure in Home Videos by Probabilistic Hierarchical Clustering
Daniel Gatica-Perez, Alexander Loui, and Ming-Ting Sun

Abstract—Accessing, organizing, and manipulating home videos
present technical challenges due to their unrestricted content and
lack of storyline. In this paper, we present a methodology to dis-
cover cluster structure in home videos, which uses video shots as
the unit of organization, and is based on two concepts: 1) the de-
velopment of statistical models of visual similarity, duration, and
temporal adjacency of consumer video segments and 2) the refor-
mulation of hierarchical clustering as a sequential binary Bayesian
classification process. A Bayesian formulation allows for the incor-
poration of prior knowledge of the structure of home video and of-
fers the advantages of a principled methodology. Gaussian mixture
models are used to represent the class-conditional distributions of
intra- and inter-segment visual and temporal features. The models
are then used in the probabilistic clustering algorithm, where the
merging order is a variation of highest confidence first, and the
merging criterion is maximum a posteriori. The algorithm does not
need any ad-hoc parameter determination. We present extensive
results on a 10-h home-video database with ground truth which
thoroughly validate the performance of our methodology with re-
spect to cluster detection, individual shot-cluster labeling, and the
effect of prior selection.

Index Terms—Bayesian decision theory, clustering, home-video
structuring.

I. INTRODUCTION

A MONG ALL sources of video content, home video prob-
ably constitutes the one that most people would eventu-

ally be interested in dealing with. However, the organization and
edition of personal memories contained in home videos present
technical challenges due to the lack of efficient tools. The devel-
opment of such tools could open doors to video albuming and
other multimedia applications [14], [11], [15].

Unrestricted content and the absence of storyline are the main
characteristics of home video. A typical home video contains a
set of events, each composed of one or a few video shots, vi-
sually consistent and randomly recorded along time. Such fea-
tures make consumer video unsuitable for analysis approaches
based on storyline models, and have diverted research on home-
video analysis until recently, as it was generally assumed that
home videos lack of any structure [14], [11]. However, recent
studies have revealed that home filmmakers’ behavior induces
certain structure [13], [7], different from that of other video
sources [10], as people implicitly follow rules of attention fo-
cusing and recording. On one hand, people keep their interest
on what they film only for a limited amount of time, and display
their interest by interacting in specific ways with the camera. On
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the other hand, capturing home video imposes continuity when
recording portions of the same event. The structure induced by
these filming trends is often semantically meaningful. Based
on these observations, recent work has investigated the extrac-
tion of significant frames [13]. We further argue that the cluster
structure of home video can be disclosed from such rules, based
on the development of statistical models of visual and temporal
features of video segments1 .

In this paper, we propose a methodology to discover the
cluster structure in home videos based on two concepts: 1)
the development of statistical models of visual similarity,
duration, and temporal adjacency of video segments and 2) the
reformulation of hierarchical clustering as a sequential binary
classification process. Our formulation requires the determina-
tion of a feature space and the selection of probability models.
Gaussian mixture models (GMMs) are used to represent the
class-conditional distributions of the observed features. The
models are then used in the hierarchical clustering algorithm,
where the merging order is a variation of highest confidence
first (HCF) [3], and the merging criterion is maximuma
posteriori(MAP) [9]. The algorithm does not need anyad-hoc
parameter determination. Our methodology has been evaluated
on a 10-h database (30 video sequences) for which a third-party
ground truth is available, showing good performance with
respect to cluster detection and individual shot-cluster labeling.
The cluster structure provides nonlinear video access and can
be used in a system for video browsing and retrieval.

The paper is organized as follows. Section II discusses the
main features of home video. Section III reviews previous work.
Section IV presents an analysis of the cluster structure of home
video, discussing the features exploited by our approach. Sec-
tion V introduces our methodology. The selection of the feature
space and probability models are described in Sections VI and
VII. The results are presented and discussed in Section VIII. Fi-
nally, Section IX draws some concluding remarks.

II. WHAT IS HOME VIDEO?

Several characteristics distinguish home video from other
video sources:

• unrestricted, nonedited content;
• absence of storyline;

1In this paper, the termclusterdescribes the concatenation of scenarios that
are filmed in the same physical location (e.g., inside a room). Camera motion
usually generates several scenarios for each cluster. On the other hand, anevent
is a higher-level semantic entity composed of one or several clusters, which
might involve more than visual information for its definition (e.g., “living
room,” “birthday party”). Bothcluster and eventconvey semantic meaning,
clusters corresponding to “elementary” events. However, event definition in
higher semantic terms is a much more complex task, and outside of the scope
of this paper. Furthermore, the term videosequencedenotes an entire video
file. In contrast, asegmentis a part of a sequence composed of one or more
shots; shots are “elementary” segments.
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• temporally ordered information;
• partially available time-stamp information;
• frequent poor-quality content (illumination, defocusing);
• few complex cuts;
• camera motion: some patterns are random (hand shaking),

but others clearly intentional (zoom-and-hold) [13];
• noncontinuous audio: “short speech/long silence” and am-

bient background sound are dominant patterns.

The structure of home videos bears similarity to the structure
of home still pictures [15], [18]: videos (respectively, film rolls)
contain series of ordered and temporally adjacent shots (respec-
tively, photos) that can be organized in clusters that convey se-
mantic meaning. Visual similarity and temporal ordering are in-
deed two of the criteria that allow people to identify clusters in
video (respectively, picture) collections, when they do not know
anything else about the content (unlike the filmmaker or photog-
rapher, who knows details of context) [15]. Furthermore, home
video is characterized by two special features.

1) People can focus their attention when filming only for
a limited amount of time. This translates both into the
amount of time that people use to record individual shots,
and into the number of shots they film per event. Previous
work has shown that home-video shot duration presents
patterns [13]. Here, we show that video clusters also dis-
play patterns in terms of cluster duration and number of
shots per cluster.

2) Home-video recording imposes temporal continuity. Un-
likeothervideosources[10],[22],[23],filminghomevideo
with a temporal back-and-forth structure is rare: on a vaca-
tion trip, people do not usually visit the same site twice. In
other words, the content tends to be localized in time.

III. PREVIOUS WORK

Clustering [12] is one of the goals of video analysis [25],
[23], [19], [11], [7]. Hierarchical agglomerative clustering
(HAC) methods have been used in the past [23], [7], [24].
Early work also proposed visual-based and time-constrained
clustering, without specifically addressing home video [25],
[23], [19].

Previous work on home-video analysis can be summarized as
follows. The work in [14] used shot clustering for video summa-
rization, assuming time-stamped materials and using only tem-
poral information. The works in [11] and [13] were the first ones
to explicitly analyze some of the statistics of home video. The
first approach created multiple groupings to provide different
views of the content, using probabilistic feature descriptions
and an information-theoretic-based annealing method [11]. The
second one presented an analysis of patterns in shot duration
and camera motion, and proposed a heuristic algorithm to ex-
tract frames based on detection of zoom-and-hold motion [13].
The work in [16] described a system based on detection and
tracking of faces inside video shots. Finally, the work in [24]
extended a clustering method developed for consumer pictures
[18] to videos.

Our work shares the Bayesian methodology with a number
of recent approaches for tasks other than video structuring, like
shot-boundary detection [22] and still-image classification [21].

In our case, we want to disclose the structure of videos for which
the number of classes cannot be pre-defined. Our work is also
related to the work in [23], but it is distinct in several ways.
Unlike [23], we systematically investigate visual and temporal
features of a specific video source, and use probability models
for clustering. Our formulation avoids the use of heuristics that
are hard to define, allows to model multiple features in a unified
fashion (a joint distribution), and provides a principled way to
introduce knowledge about the problem (a prior distribution).

IV. ON THE CLUSTERSTRUCTURE OFHOME VIDEOS

A. The Kodak Home-Video Database

The data set consists of 30 MPEG-1 video clips, with indi-
vidual duration between 18 and 25 min, and digitized from VHS
tapes at 1.5 Mbit/s in SIF format. The total duration is nearly
10 h. The videos were collected from 11 people, and are rep-
resentative of consumer content: indoor and outdoor scenes de-
picting weddings, vacations, children at home, school parties,
etc. A third-party ground truth at both the shot and the cluster
levels was manually generated (see Section VIII for further dis-
cussion). Additionally, transitional shots with no content, and
very poor quality shots were not taken into account. After this
adjustment, the set consists of 801 shots and 189 clusters. The
number of shots and clusters per sequence presents significant
variations.

B. Analyzing the Cluster Structure of Home Videos

1) The Effect of Limited Focus of Attention:Statistical
models of temporal video features were originally proposed
in [22], introducing a Weibull model for shot duration in
professional movie trailers. A similar approach was followed
in [13] for home-video shot duration. While in the first case,
shot duration is related to the creation of narrative atmospheres
[10], [22], in the second one it constitutes an expression of
human interest. However, this feature was not used in [13], as
it was claimed that shot duration did not appear to be related to
frame significance.

We argue that not only shots but also home-video clusters
have clear temporal patterns. Unlike [13], we have made use
of this information. Fig. 1(a) illustrates the empirical distribu-
tion of shot duration in the database and its approximation by
a GMM. It can be seen that the duration of shots remains in
the range of a couple of minutes. This is an indication of the
typical amount of time that people are able to stay focused on
when operating a camera. This limitation in interest is also evi-
dent by looking at the duration of video clusters. Fig. 1(b) shows
the empirical distribution of cluster duration and its GMM ap-
proximation. Video clusters have a definite trend to last only a
few minutes. In our database, approximately 95% of the clus-
ters last less than 10 min. As a consequence of lack of attention,
long video clusters are rare.

The complementary information is the distribution of number
of shots per cluster. Although both the number of shots and the
number of clusters per sequence vary considerably, most clus-
ters are composed of only a few shots. Fig. 2(a) and (b) shows
the distribution of shots and clusters per sequence. As a gen-
eral trend, outdoor shots are shorter than indoor shots; hence,
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(a)

(b)

Fig. 1. (a) Consumer video shot duration. Empirical distribution of normalized
shot duration and its GMM approximation. Shot duration was normalized by
the longest shot in the database (580 s.). (b) Consumer video cluster duration.
Distribution of normalized cluster duration and its GMM. The maximum cluster
duration is 1217 s.

outdoor sequences normally contain more shots than indoor se-
quences of similar duration. However, it is also common to find
both outdoor and indoor shots in the same video. Fig. 2(c) shows
the distribution of number of shots per cluster. In brief, approx-
imately half of the clusters in the database are composed of one
or two shots, and four out of five clusters are composed of six
or less shots.

2) Effect of Continuity:Home-video clusters composed of
nonadjacent shots, that is clusters with forward and backward
temporal jumps, are infrequent (about 3% of the clusters in the
data set). In other words, clusters are localized in time, and
therefore strong connectivity can be assumed for clustering,
which has the benefits of computational simplicity.

3) Visual Similarity in Home-Video Clusters:Computing
similarity between images/videos has been extensively ad-
dressed in CBIR [20]. An important question regards the
visual structure of home-video clusters: how similar (re-
spectively, dissimilar) are segments that belong to the same
(respectively, a different) cluster? Let and denote two
segments in a sequence,denote a binary random value that
indicates their belonging to the same cluster( if

, and zero otherwise), and denote
a pairwise similarity measure. A -bin mean RGB color
histogram was computed for each shot
in the database, and used to construct the empirical distri-
butions of intra-cluster and inter-cluster

(a)

(b)

(c)

Fig. 2. Empirical distributions of: (a) number of shots per sequence;
(b) number of clusters per sequence; and (c) distribution of shots per cluster.
50.3% of the clusters in the database are composed of one or two shots; 80.4%
of the clusters are composed of six or less shots.

pairwise visual similarity ( denotes the
knowledge about the world). For the inter-cluster case, pairwise
computation was limited within the interval that contains
95% of the probability mass of cluster duration [Fig. 1(b)].
The similarity measure was the typical norm in the space
[20]. The distributions appeared quite overlapped as a result
of the unrestricted content of home video [Fig. 3(a)]. This
result highlights the limitations of both features and distance
measures to define similarity among video segments and the
challenges of the problem.

Recapitulating, the data analysis shows that there indeed ex-
ists cluster structure in home videos. It also suggests the devel-
opment of methods that integrate segment visual similarity and
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duration in a joint model, rely on strong temporal adjacency, and
account for the fact that clusters are composed of few segments.
One such method is described in the next section.

V. OUR APPROACH

HAC algorithms can be based on probability models [2]. We
propose to build models of visual similarity, duration, and tem-
poral adjacency defined on pairs of segments. A HAC algorithm
can be thought of as a sequential binary classifier, which at each
step decides whether a pair of segments should be merged. The
formulation as a two-class classification problem allows for the
use of Bayesian decision theory. The MAP criterion establishes
that given a realization of (representing features extracted
from segments and ), the class that must be selected is

where and are defined as before, denotes the
posterior probability of given , and the subindices in have
been dropped. Applying Bayes’ rule

(1)

where are the class-conditional pdfs of the observed
features, is the class prior, denotes the posterior odds
ratio, denotes the hypothesis that the segment pair belongs to
the same cluster, and denotes the opposite. The prior allows
for the introduction of knowledge about home video. The algo-
rithm treats each elementary segment (shot) as a cluster, suc-
cessively evaluates the pair of segments that corresponds to the
largest , merges when , and continues until in (1) is
no longer valid. This greedy strategy bears similarity with the
highest confidence first (HCF) method used in Bayesian image
analysis [3]: at each step, decisions are made based on the piece
of information that has the highest certainty. The formulation
does not require anyad-hocparameter determination, and can
be seen as a generalization of previous time-constrained clus-
tering algorithms [23]. Due to the characteristics of home video,
only the two neighbors of each segment have to be analyzed. The
method can be efficiently implemented using adjacency graphs
and priority queues, as described in [8].

The methodology requires the determination of an appro-
priate feature space, and the selection of models for the distri-
butions. These issues are described in the following sections.

VI. V IDEO-SEGMENT FEATURE EXTRACTION AND SELECTION

First, shot boundaries are detected by standard methods [6].
Oversegmentation due to illumination or noise artifacts can be
handled by the clustering algorithm. In the following, we de-
scribe the process of feature extraction and selection, which is
based on an empirical study of discriminative power of features
and similarity measures in home-video segments.

A. Extraction of Visual Features

Home-video shots usually contain more than one appear-
ance, due to hand-held camera motion. We have adopted an

approach that detects subshots inside each shot, which approx-
imately correspond to individual scene appearances, and then
extracts features from a set of random frames in each subshot.
More elaborate key-frame extraction algorithms would not
outperform random frame selection unless there was theoretical
support for it. A shot is defined as a collection of subshots

, and each subshot is characterized
by a set of random frames .

Subshots are sequentially extracted by thresholding a pair-
wise similarity measure between frames inside each shot [19].
Furthermore, subshots of very short duration are discarded, as
they often correspond to fast camera pannings. For image repre-
sentation, we have selected joint histograms of color and scene
structure information [17]. Investigated features included:

1) color in RGB space (uniformly quantized to 88 8
bins), and HSV space (vector-quantized to 1024 colors);

2) color ratios (known to be illumination-invariant), non lin-
early quantized to 32 levels [1];

3) edge density and edge direction features [21].
Regarding the similarity measure, if subshots are

characterized by and random frames, respectively, each
represented by a joint histogram , the similarity
between subshots is defined as

where measures like the norm , the Bhattacharyya co-
efficient metric [4], or the correlation coefficient measure

, can be used for . The similarity between two shots
and , consisting of and subshots, respectively, can then
be computed as a-ranked vector of similarities between sub-
shots

where the index indicates the rank. For

(2)

B. Selection of Visual Features

We estimated the intra- and inter-cluster distributions for all
the features and similarity measures discussed in the previous
subsection, using a subset of 75% of the sequences in our
database. Features were selected based on the overlap they
induced between the two pdfs. The empirical probability
of error, for a noninformative prior, can be computed by

, where
and are the overlapped

areas between the two class-conditional pdfs. Tables I and II
summarize the results.

Table I shows the empirical probability of error computed for
RGB histograms with and without subshot detection, and for
four-dimensional (4-D) histograms that combine color and edge
density (EDEN), edge directions (EDIR), and color ratios (YR).
The advantage of using subshot detection and random frames
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TABLE I
FEATURE-SELECTION: L METRIC

TABLE II
COMPARISON OFSIMILARITY MEASURES. JOINT HISTOGRAM RGB-EDEN

(SS+RF) as opposed to global shot information is evident, as
subshot analysis has improved the separation between the two
classes. The use of joint histograms further improves discrim-
ination. RGB-EDEN produced slightly better results than the
other 4-D histograms. No improvement was found when using
the HSV color model. Additionally, the results of applying var-
ious similarity measures are presented in Table II and Fig. 3(b).
The norm and the metric based on Bhattacharyya coeffi-
cient produced better results than the correlation coefficient. The
Bhattacharyya coefficient can be interpreted as the cosine of the
angle between the component-wise square-rooted pdfs approx-
imated from the joint histograms [4], so and can be
seen as representations of magnitude and angle, and constitute
the features to characterize visual similarity.

C. Selection of Temporal Features

The analysis in Section IV made evident the possibility of
using strong adjacency for clustering. The accumulated dura-
tion of two segments is an indication of their belonging to the
same cluster (segments of increasing length become less likely
to belong to the same cluster). Such a feature is defined by

(3)

where and denote the first and last frame of [19].

VII. M ODELING OFLIKELIHOOD FUNCTIONS AND PRIOR

A. Modeling of Likelihood Functions With GMMs

The features described define a space, with vectors
. The class-conditional pdfs of the observed

features are represented by multivariate GMMs

where is the number of components in each mixture,
denotes the prior of the-th component,

is a three-dimensional (3-D) Gaussian with full
covariance matrix, parameterized by , and

denotes all the parameters. Expecta-
tion-maximization (EM) constitutes the standard procedure for
maximum likelihood (ML) estimation for GMMs [5]. Addi-

(a)

(b)

Fig. 3. Pairwise shot visual similarity distributions. Intra-cluster and
inter-cluster pdfs are represented by continuous and dotted-line curves,
respectively. (a) Features based on global shot information (RGB mean
histograms);L norm. (b) Features from subshot detection, random frame
extraction, and joint RGB-EDEN histograms; similarity measure based on
Bhattacharyya coefficient.

tionally, model selection is performed via minimum description
length (MDL) by choosing

where denotes the likelihood of the training set, is the
number of training vectors, is the training set, and is the
number of parameters needed for the model, given by

B. Modeling of Prior

The prior encodes the belief about the clustering process [9].
While the simplest assumption is a uniform prior, Section IV
suggested that merging must be discouraged as clusters usu-
ally consist of only a few shots. The prior should reflect this
knowledge. One possibility is to determine it from the avail-
able evidence. While this technique does not conform to the
Bayesian principle, it usually produces better solutions than ar-
bitrary priors. Assuming independence among thetraining
data, the ML estimator of the prior is defined by
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where if the th training sample belongs to the class
, and zero otherwise.

VIII. E XPERIMENTS AND RESULTS

When cluster structure does exist in data (so that a ground
truth can be generated), the two criteria for quantitative evalu-
ation of a clustering algorithm are , the determination of the
number of clusters, and , the determination of the cluster label
for each datum, compared to the ground truth. Although many
algorithms for video segment clustering have been proposed in
the literature [25], [23], [19], [14], their performance using the
two mentioned criteria is unknown in several cases. Refer to [8]
for a review of the literature in this respect.

A. Ground Truth

A third-party cluster ground truth was determined based on
human evaluation of shot visual similarity, temporal adjacency,
and blind context understanding. This type of ground truth is
common for performance evaluation, including movie analysis
and still images [15], and is useful to perform benchmarking
against the limit of a computer algorithm which has no context
knowledge. Note that although there are differences of judge-
ment between people due to the uncertainty about the contents,
there indeed exists cluster structure in home videos. The incor-
poration of multiple human judgements of similarity and the
use of statistical measures for evaluation of video analysis al-
gorithms are research issues currently under study.

B. Performance-Evaluation Procedure

Results were generated with the leave-one-out method: one
video sequence was held for evaluation while the rest were in-
cluded in the training set. Given NC, the number of clusters in
the ground truth (either for an individual sequence or for the
whole database), the criterion is evaluated by defining three
variables:detected clusters(DC), which indicates the number of
clusters that were found by the algorithm,false positives(FP),
defined by if and zero oth-
erwise, andfalse negatives(FN), defined by
if and zero otherwise. To evaluate the crite-
rion , shots in error(SIE) is used to denote the number of
shots whose cluster label does not match the label in the ground
truth. Finally,correcting operations(CO) indicates the number
of operations (merging/splitting) needed to correct the results
so that SIE is zero; we believe this is a good indication of the
effort required in interactive systems. The performance figures
are then turned into probabilities. Ifis any of the parameters
of interest, the frequentist performance evaluation produces two
typical estimates: themacro-average , which is directly com-
puted over the whole database, and themicro-average , in
which the figure is first estimated for each individual sequence,
and then averaged over the whole database. The first measure
gives the same importance to each shot (or cluster) in the data-
base; the second one gives the same importance to each video

sequence, regardless of the number of shots or clusters it con-
tains. We present both figures for discussion. For macro-aver-
ages, if , the figures are computed by

(4)

and if , the expressions are

(5)

Additionally

(6)

where stands for the number of shots. For micro-averages,
(4)–(6) are valid for each individual sequence. Results are then
accumulated and averaged over the whole database.

C. Results

The detailed results are shown in Table III (videos sorted ac-
cording to number of shots). The summarized results appear in
Tables IV and V. Table IV shows the capability of our method-
ology to detect clusters. This is a hard problem, due to the vari-
ability in the data set [Fig. 2(b)]. The macro-average shows
that the total number of detected clusters approximately corre-
sponds to the number of clusters in the database. This is ob-
viously an over-optimistic estimate, as false positives in some
sequences compensate for false negatives in others. In contrast,
the micro-average is a more reliable measurement for cluster de-
tection. The estimated value for dc was 0.75 (the ground truth
would produce a value of one). Furthermore, fp is approximately
twice the value of fn (0.171 and 0.079, respectively), which re-
flects the fact that the method has a tendency to oversegment
(from Table III, the algorithm generated at least one false pos-
itive in 16 sequences, and at least one false negative in 8 se-
quences). A similar trend has been reported by other researchers
for other types of video content [23], [19]. Furthermore, sev-
eral of the false negatives actually consist of only one or two
shots according to the ground truth. We also show the poor
result obtained with an algorithm that randomly estimates the
number of clusters for each video. This result simulates the case
in which home videos truly did not have structure, so any clus-
tering would be equally good.

Table V describes the performance in terms of shot-cluster
assignment. For macro- and micro-averages, the ground truth
generates a zero value for sie and co. In this case, both mea-
sures are useful. Variations between them indicate difference of
performance from sequence to sequence. We selected a number
of baseline methods for comparison, which assume thecorrect
number of clusters for each sequence, as dictated by the ground
truth. The methods are: 1) , which assigns a uniform and tem-
porally adjacent number of shots per cluster [18]; 2), a ver-
sion of -means for shots, in which the centroids were initial-
ized with randomly selected shots from each sequence; and 3)

, the same variation of -means, but in which the centroids
were initialized with equally “spaced” shots (in terms of shot
number). The “distance” between a shot and a centroid in the
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TABLE III
VIDEO-CLUSTERINGRESULTS ONKODAK HOME-VIDEO DATABASE

TABLE IV
CLUSTER DETECTION PERFORMANCE

TABLE V
SHOT ASSIGNMENTPERFORMANCE

-means algorithm was computed by (2). The shot representa-
tion (random frames extracted from subshots, each represented
by a 4-D joint histogram) remained constant for all clustering
algorithms. Finally, we also considered the case of random clus-
tering .

The results show that our methodology outperformed all
of the baseline methods. Using macro-averages (respectively,
micro-averages) as measurement, our methodology assigned
71.1% (respectively, 71.4%) of the shots to
the correct cluster. In contrast, the two-means algorithms
produced a similar performance, the best one generating 47.6%
(respectively, 56%) of correct shot assigments. Interestingly,
uniform shot-assigment performed better than-means [54.7%
(respectively, 57%) of correct assigments]. A similar trend can
be observed for the probability of correcting operations (co).
The mean number of shots per sequence is ,

(a)

(b)

Fig. 4. (a) Posterior distributions of the probability of shot in error, for
uniform prior and different structuring algorithms. PC denotes our approach.
(b) Posteriors of the probability of correcting operations.

TABLE VI
EFFECT OFPRIOR PROBABILITY

and therefore 3.55 (respectively, 4.62) operations are needed in
average to correct the cluster assignments in a 20-min video
with the proposed method.

The Bayesian approach can be used to specify a prior on the
probability of shot in error, include a likelihood, and use the pos-
terior (conditioned on the observations) to compute posterior in-
tervals or visualize the performance [9]. In the-shot database,
suppose shots in error are observed. The likelihood
is a binomial distribution, . If,
for analytic convenience, it is further assumed a uniform prior

, the expression for the posterior becomes

Fig. 4(a) compares the posterior distributions over the prob-
ability of shot in error, estimated for the different clustering
methods, where (the distributions have been rescaled
in the vertical axis to be plotted together). Fig. 4(b) presents the
corresponding analysis to compare the posterior distributions of
the probability of correcting operations .

The effect of the prior distribution in the clustering algorithm
is shown in Table VI. A uniform prior does not make use
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Fig. 5. Generated structure for aBabyvideo sequence (detail). Each shot is represented by one frame. Clusters correspond to rows of shots.

of knowledge of the problem: merging should be discouraged as
most video clusters consist of a few shots. The results reflect this
fact: no false positives were detected in the entire database, as
more mergings were allowed, but this additional clustering re-
sulted in performance detriment. The uniform prior generates a
micro-average , and a probability of shot in error of
0.393 and 0.309, using macro- and micro-averages, respectively.
A detailed inspection of the results indicate that larger clusters
have indeed been favored, with most errors coming from shots
that belong to small clusters which were erroneously merged. On
the other hand, the ML estimate of the prior was

. This distribution reflected the knowledge about the
problem in better terms, and improved performance.

One example of the generated clusters is shown in Fig. 5.
Each cluster is displayed as a row of shots, which are in turn

represented by a random frame each. Qualitatively, the method-
ology provides quite reasonable results. We have integrated it in
the development of a system for organization of home videos.
An interface that displays the structure as a tree consisting of
sequence, cluster, shot, and subshot levels is shown in Fig. 6.
The interface also allows for reorganization of video structures,
and retrieval of information from them.

D. Limitations

There are three main reasons for erroneous merging: high vi-
sual similarity between semantically disjoint but temporally ad-
jacent clusters, shots of very short duration, and clusters of very
short duration. Furthermore, the two reasons for erroneous over-
segmentation are high intra-cluster visual variability, and unusu-
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Fig. 6. A video structure as a tree. The root node corresponds to the sequence, the middle nodes to the clusters, and the leaf columns represent the shots, composed
of random frames extracted from subshots.

ally long clusters (see [8] for examples). As a general trend, out-
door scenes are harder to cluster correctly.

Although the proposed approach has produced good results,
it is known that the use of global low-level features has lim-
itations to model semantic information [20]. Our work could
benefit from the use of image segmentation into a few regions
as the starting point for matching elements across representative
frames. One advantage of the proposed method is that the defini-
tion of new features (including for instance multiple definitions
of similarity) can be directly introduced in the formulation via a
joint pdf. Finally, the introduction of higher-level features such
as faces should also be investigated [16].

IX. CONCLUDING REMARKS

This paper presented a methodology to discover cluster struc-
ture in home videos by incorporating some of the inherent char-
acteristics of such content in a probabilistic framework. A de-
tailed analysis of the visual and temporal structure of a rela-
tively large and diverse database offered a number of clues that
were embedded in a Bayesian formulation of hierarchical clus-
tering. Features of intra- and inter-cluster visual similarity, ad-
jacency, and duration were exploited. The obtained results are
encouraging, but also illustrate the complexity of the research
problem. Several issues remain open, including the investiga-

tion of both better mechanisms to quantify similarity between
video segments and features that can capture such similarity,
and the integration of region-based and multimedia representa-
tions (i.e., using audio) in the proposed framework.
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