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1 Introduction

The ancient Maya civilization flourished from around 2000 BC to 1600 AD
and left a great amount of cultural heritage materials, in the shape of stone
monument inscriptions, folded codex pages, or personal ceramic items. All
these materials contain hieroglyphs (in short glyphs) written on them. The
Maya writing system is visually complex (Fig. 1) and new glyphs are still being
discovered. This brings the necessity of better digital preservation systems.
Interpretation of a small amount of glyphs is still open to discussion due to
both visual differences and semantic analysis. Some glyphs are damaged, or
have many variations due to artistic reasons and the evolving nature of language.

Signs following ancient Mesoamerican representational conventions end up
being classified according to their appearance, which leads to potential confu-
sions as the iconic origin of many signs and their transformations through time
are not well understood. For instance, a sign thought to fall within the category
of “body-part” can later be proven to actually correspond to a vegetable element
(a different semantic domain). Similarly, several signs classified as “abstract”,
“square” or “round” could actually be pars-pro-toto representations of a larger
whole.

Fig. 2 illustrates the challenges to analyze Maya glyphs visually. We pose
it that adding functionalities that take context (i.e., co-occurrence statistics of
other glyphs, characteristics of the data) and part-whole relations (i.e., high-
lighting diagnostic parts) into account would bring guidance during decipher-
ment tasks. The tools we envision are different from existing almanac-by-
almanac visualization systems [15]. They are also more engaging for users (i.e.
visitors in museums), and offer promising perspectives for scholars.

This motivates the study of data visualization. In this paper, we built a
prototype for visualization of glyphs based on visual features. We introduce
(1) an approach to analyze Maya glyphs combining a state-of-the-art visual
shape descriptor, and (2) a non-linear method to visualize high-dimensional
data. For the first component, we use the histogram of orientation shape con-
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Figure 1: A stone inscription found in Pomona, Tabasco (Mexico), Panel 1 from
771 AD. Photograph by Carlos Pallan Gayol for the AJIMAYA/INAH Project
(© 2006. Instituto Nacional de Antropologia de Historia, Mexico.

text (HOOSC) [13, 12, 11] which has similarities to other descriptors of the
recognition literature [1, 3, 9], but is adapted to shape analysis [4].

For the second component, we use the t-distributed Stochastic Neighborhood
Embedding (t-SNE) [16], which is a dimensionality reduction method from the
machine learning literature that has value for Digital Humanities (DH), as it can
highlight the structure of high-dimensional data, i.e., multiple viewpoints among
samples. As analysis of DH data is often based on attributes like authorship,
produced time, and place, observing these variations as smooth transitions with

Impersonated glyph
(designed as animal
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Category T116 and T117
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Figure 2: Maya glyph samples from several categories (according to Thompson’s
catalog) that illustrate the within-class variety and between-class similarity.
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Figure 3: Overall flow for visualization with t-SNE.

t-SNE becomes a relevant feature.

We show that the proposed visualization methodology is useful to analyze
the extent of spatial support used in the shape descriptor and to reveal new
connections in the corpus through inspection of glyphs from stone monuments
and glyph variants from catalog sources. In particular, we hope that the pre-
sentation of our use of t-SNE can motivate further work in DH for other related
problems.

2 Methodology

The analysis process is illustrated in Fig. 3. First, for each glyph, a stan-
dard visual bag-of-words representation (BoW) is computed from the HOOSC
descriptors. Second, dimensionality reduction is performed on the BoW repre-
sentation of a glyph collection to generate the visualization. The main steps are
described in sections 2.3 and 2.3.

2.1 Datasets

We illustrate our visualization pipeline on two individual Maya glyph datasets.

Monument Data: We use a subset (630 samples from 10 classes, Fig. 4) of
hand-drawings [12], corresponding to syllabic glyphs inscribed in monuments.
These samples are collected by archeologists (as part of Mexico’s AJIMAYA
project) from stone inscriptions spread over four regions (Peten, Usumacinta,
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Figure 4: Sample glyph images, corresponding Thompson annotations, and syl-
labic values (sounds) of selected 10 classes from the syllabic monument glyph
dataset.
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Figure 5: HOOSC computation at a sample position p of the shape, which
includes: computation of 1) pixelwise orientations, 2) histogram of local orien-
tations in each spatial bin, and 3) per-ring normalization of the histograms.

Motagua, and Yucatan). As an additional source, around 300 glyph samples
are taken from existing catalogs [14, 10].

Thompson Catalogue: We use 1487 glyph variants cropped from the Thomp-
son’s catalogue. These variants belong to 814 categories and are divided as main
sign and prefix/suffix groups in the catalogue.

2.2 Visual Feature Representation

The HOOSC is a shape descriptor proposed in our research group for Maya
glyphs [13]. It is computed in two main steps (Fig. 5). First, the orientations of
a set of sampled points are computed. Secondly, for a given sampled position,
the histogram of local orientations are computed using a small number N, of
angle bins forming a circular grid partition centered at each point. The HOOSC
descriptor is obtained by concatenating all histograms, and applying per-ring
normalization. Basic parameters are the spatial context sc, defining the extent
of the spatial partition; the number of rings N,; and the number N, of slices in
a ring. With N, =8, N, =2, Ny = 8, HOOSC has 128 dimensions. We have
used HOOSC for usual retrieval and categorization tasks [7].

2.3 Dimensionality Reduction: t-SNE

Proposed in [6], SNE is a non-linear dimensionality reduction method. It relates
the Euclidean distances of samples in high-dimensional space to the conditional
probability for each point selecting one of the neighbors. These distributions
are modeled as heavy-tailed t-distributions in [16] (t-SNE). t-SNE aims to find
for each data point, a lower-dimensional projection such that the conditional
probabilities in the projected space are as close as possible to those of the
original space (measured with Kullback-Leibler divergence [8]).

In our application, first, we project the BoW representation to a 30-dimensional
space using PCA, then applied t-SNE to these projections to get 2-dimension
mapping. t-SNE keeps track of the local structure of the data as it optimizes
the clusters globally.



3 Results and Discussion

The full-scale visualization of the glyphs are available at
https://www.idiap.ch/project/maaya/demos/t-sne/.

3.1 Glyph Monument Corpus Structure

Fig. 6 shows the monument corpus. The region encoded in the visual descriptor
varies from almost the whole glyph (sc¢ = 1/1) to small local parts (sc = 1/8).
One question is how spatial context influences the visualization of the repre-
sentation. Regarding the visual clusters, with the most global representation
(sc = 1/1), our method extracts more distinct clusters, e.g. T229 and T126 in
Fig. 7 (navy and magenta in Fig. 6 and 9). Please refer to Fig. 9 for roughly-
colored clustered on the actual glyph images. As the descriptor gets more local,
the categories with common patterns mix up (Fig. 6). Yet, our method is able
to capture meaningful common local parts and maps the samples based on these
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Figure 6: Monument data: t-SNE plots with visual representations obtained at
4 different spatial context levels.
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Figure 7: Monument data: Close-up of two clusters (T229 on the left and T126
on the right), corresponding to navy and magenta clusters in Fig. 6 with the

most global HOOSC descriptor (sc = 1/1).

elements, i.e. parallel lines, hatches, and circles.
For Maya epigraphers in our team, a more neatly differentiated grouping of

signs, such as that resulting from HOOSC with sc¢ = 1/1 is preferable. However,
work on the effects of parameter choice is required to obtain groupings that
make more epigraphic sense. Clearer “borderlines”, less “outliers”, and less
“intrusive” signs (e.g. T25 and T1) within each cluster would be desirable.
Our results in this regard are preliminary, but they open promising research
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Figure 8: Monument data: Close-up of two clusters (T59 on the left and T116
on the right), which exhibit smooth transition between samples corresponding

to place or temporal variations.



Figure 9: Monument data: Visualization of all class samples with the most
global HOOSC descriptor (sc = 1/1).

questions.

Another important epigraphic point is that we observe interesting visual
transitions between samples of the categories. Fig. 8 shows examples from cat-
egory T59 (left) and T116 (right), which illustrate a smooth dilation of samples
in one direction. These kind of observations are interesting for the archeolo-
gists, since they might correspond to modification of the glyph signs over time
or place.
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Figure 10: Catalogue data: A visual cluster of main signs from the Thompson
catalogue, with the most global HOOSC descriptor (sc¢ = 1/1). Many of them
are impersonatedd main signs that corresponds to gods or animals. In this part
of the visualization, the upper left part has more visually complex variants than
the rightmost samples.

3.2 Glyph Variants from the Thompson Catalogue

From the visualization of glyph variants in Thompson’s catalogue with the
largest spatial context level (sc = 1/1), we observe that visually similar cat-
egories are grouped together, while exhibiting smooth transitions. These tran-
sitions may correspond to some characteristics of the data. Fig. 10 shows a
cluster of personified main signs in which the degree of visual internal detail
decreases in the indicated direction. We also observe separate visual clusters
for hatched, horizontal and vertical glyphs.

4 Conclusion

Our goal in this study is to help DH scholars to visualize data collections not
as isolated elements, but in context (visually and semantically).

Even though early catalogs are built based on visual similarities, i.e., Thomp-
son [14] or Zimmermann [17] relied on graphic cards to study similar patterns
and spatial distributions, the categorization methods were poorly understood
and were not easy to reconfigure. Furthermore, due to the limited knowledge
at the time about semantics and sign variants, these catalogs turned out to be
inaccurate or outdated. Similarly, Gardiner’s list [5] is insufficient to elucidate
sign variability in the “Book of The Dead” [2].

With the proposed tool, however, considering details at different scales as se-
mantic/diagnostic regions in the visualization can help archaeologists to discover
semantic relations. In this way, overlapping notions such as “colors”, “cardinal



directions” and specific toponyms from earthly, heavenly or underworld realms
can be studied in greater detail.

Finally, illustrating all variations with different visual focus in a fast and
quantitative manner brings out the characteristics of signs. This also helps ex-
perts match samples from various sources (i.e. monuments, codices, and ceramic
surfaces) to corpus data more efficiently; and trigger the decipherment of less
frequent and damaged signs. Hence, our work is a step towards producing a
more accurate and state-of-the-art sign catalog.
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