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ABSTRACT

Close-talk headset microphones have been traditionally used for
speech acquisition in a number of applications, as they naturally
provide a higher signal-to-noise ratio -needed for recognition tasks-
than single distant microphones. However, in multi-party conver-
sational settings like meetings, microphone arrays represent an im-
portant alternative to close-talking microphones, as they allow for
localisation and tracking of speakers and signal-independent en-
hancement, while providing a non-intrusive, hands-free operation
mode. In this article, we investigate the use of an audio-visual sen-
sor array, composed of a small table-top microphone array and a
set of cameras, for speaker tracking and speech enhancement in
meetings. Our methodology first fuses audio and video for per-
son tracking, and then integrates the output of the tracker with a
beamformer for speech enhancement. We compare and discuss the
features of the resulting speech signal with respect to that obtained
from single close-talking and table-top microphones.

1. INTRODUCTION

A significant trend in computing research is towards pervasive
computing, where the computer becomes an integral part of the en-
vironment, observing, analysing and influencing behaviour through
an array of multimodal sensors. Applications include instrumented
meeting rooms or lecture halls, where the goal is to enhance (co-
located or remote) collaboration, both in real-time and through
recorded multimedia archives.

In this article, we investigate the use of an audio-visual sensor
array for speech acquisition in a meeting room. Audio is captured
using a circular, table-top array of 8 microphones, and visual infor-
mation is captured from 3 different camera views. Both audio and
visual information are first used to find and track the location of
each speaker in the meeting room. Microphone array beamform-
ing techniques are then applied, providing hands-free (untethered)
speech acquisition from each tracked location.

Multiple microphones and video cameras have been recently
used for tracking speakers in video-conferencing [7] and meet-
ing analysis [3]. These works did not study the use of tracking
for speech enhancement. The work closest to ours is perhaps [1],
where a microphone array and two cameras were used to enhance
and recognize speech. The specific algorithms used for localiza-
tion, tracking, and enhancement are however substantially differ-
ent to ours.
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While some background noise exists in meeting rooms due to
devices such as laptops and data projectors, the most significant
source of ‘noise’ (with respect to a given person’s speech) is the
concurrent occurrence of speech from other people. In [13], it was
identified that around 10-15% of words, or 50% of speech seg-
ments, in a meeting contain a degree of overlapping speech. These
overlapped speech segments are problematic for speaker segmen-
tation, and speech and speaker recognition. In previous work to
recognise overlapping speech in meetings [11], we used a superdi-
rective beamformer [4] followed by a post-filtering stage. In that
case, the post-filter was based on one which assumed the predomi-
nant noise was diffuse [9]. In the current paper we instead propose
a new post-filter that more effectively removes overlapping speech.

The paper is organised as follows. Section 2 presents the sen-
sor array configuration and discusses inter-modality calibration is-
sues. Section 3 details our technique for audio-visual speaker
tracking. Section 4 describes our microphone array speech en-
hancement approach. Section 5 presents and discusses experimen-
tal results of the integrated tracking and speech enhancement sys-
tem. Conclusions and future work plans are given in Section 6.

2. AUDIO-VISUAL SENSOR ARRAY

2.1. Sensor configuration

The sensor array is deployed in a 8.2m×3.6m×2.4m meeting room
containing a 4.8m×1.2m rectangular table [10]. The audio sensors
are configured as an eight-element, circular equi-spaced micro-
phone array centered on the table, with diameter 20cm, and com-
posed of high quality miniature electret microphones. The video
sensors include seven CCTV cameras. Two cameras on opposite
walls record frontal views of participants, including the table and
workspace area, and have non-overlapping fields-of-view (FOVs).
A third wide-view camera looks over the top of the participants
towards the white-board and projector screen. Four more cameras
are co-located with the microphone array on the table for close
views of meeting participants, but are not used for the reported
experiments. Sample images from the room and the sensor array
can be seen in Fig. 1. All sensors are connected to fully synchro-
nized capture devices. Video is captured at 25 fps, while audio is
recorded at 16kHz.

2.2. Sensor calibration

To relate points in the 3-D camera reference with 2-D image points,
we calibrate the three cameras of our meeting room to a single 3-D
external reference, using a standard camera calibration procedure
[15], with the software available in [2]. The method estimates the
different camera parameters with a given number of image planes.



The microphone array has its own external reference, so in order
to map a 3-D point in the microphone array reference to an image
point, we also need to define a transform for basis change. Fi-
nally, to complete the audio-video mapping we need to find the
correspondence between image points and 3-D microphone array
points. From stereovision, the 3-D reconstruction of a point can be
done with the image coordinates of the same point in two different
camera views. Each point in each camera view defines a ray in the
3-D space. Optimisation methods can be used to find the intersec-
tion of the two rays, which correspond to the reconstructed 3-D
point [6]. This last step is used to map the results of the tracking
algorithm, (i.e. the location of people in the image planes) back to
3-D points, as input to the beamformer.

Figure 1: Camera 3-D external reference.

3. AUDIO-VISUAL PERSON TRACKING

We address the problem of tracking multiple people as one of ap-
proximate inference in a graphical model, using sequential Monte
Carlo (SMC) methods [5]. We use a multi-object state space for-
mulation, which in addition to being mathematically rigorous, al-
lows for the explicit definition of object interaction models. For
multi-object configurations Xt = (X1,t, ..., XNO ,t), and audio-
visual observations Yt, the filtering distribution p(Xt|Y1:t) is re-
cursively approximated by a weighted set of samples or particles
{X

(n)
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t }Ns

n=1, and updated as new observations become avail-
able, via importance sampling. Given a multi-object dynamical
model p(Xt|Xt−1), a multi-object observation likelihood p(Yt|Xt),
and the particle set at the previous time step, a set of candidate con-
figurations at the current time step are drawn from a proposal dis-
tribution q(Xt) =
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computed as w
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t ). A person is represented by the

silhouette of the head in the image plane. A mixed state-space is
defined over joint multi-object configurations, where in addition
to a set of continuous variables modeling head motion, discrete
variables are included to model each participant’s speaking status.

Observation models are derived from audio and video. Audio
observations are derived from an speaker localisation algorithm as
follows. First, a sector-based source localisation algorithm is used
to generate candidate 3-D locations of people when they speak [8].
Given the higher sampling rate for audio, multiple audio localisa-
tion estimates are merged for each video frame. We then use the
sensor calibration procedure in the previous section to project the
3-D audio estimates on the corresponding 2-D image planes. Fi-
nally, the audio observation likelihood relates the distance between
the audio localisation estimates and the candidate configurations
on the image plane. Visual observations are based on shape and
spatial structure of human heads. The shape observation model is
derived from edge features computed over a number of perpendic-
ular lines to a proposed head configuration. The spatial structure
observations are derived from skin-colour blob features.

Inference with a simple particle filter on the high-dimensional
space defined by several objects being tracked is computationally
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Figure 2: Horizontal polar plot of the directivity pattern of the su-
perdirective beamformer for an 8-element circular array of radius
10cm

infeasible. We have dealt with this issue by using Markov Chain
Monte Carlo (MCMC) sampling, which efficiently places samples
as close as possible to regions of high likelihood [5].

For speech acquisition, the multi-object person tracker is run
in each video stream independently, outputting the 2-D location of
each person’s head center for each view. The video-audio map-
ping described in Section 2 is used to reconstruct 3-D locations
from two 2-D points. Such 3-D points are used as input to the
beamformer, as described in the following section.

4. SPEECH ENHANCEMENT IN MEETINGS

Similar to the system presented in [11], the microphone array speech
enhancement system includes a filter-sum beamformer followed
by a post-filtering stage.

4.1. Beamformer

For the beamformer, we use the superdirective technique to cal-
culate the channel filters maximising the array gain, while main-
taining a minimum constraint on the white noise gain. This tech-
nique is fully described in [4]. Figure 2 shows the polar directivity
pattern of this superdirective beamformer at several frequencies
for the array used in our experiments. We see that this geometry
gives reasonable discrimination between speakers separated by at
least 45o, making it suitable for small group meetings of up to 8
participants (assuming a relatively uniform angular distribution of
participants).

For the experiments in this paper we integrated the tracker out-
put with the beamformer in a straightforward manner. Any time
the distance between the tracked speaker location and the beam-
former’s focus location exceeded 5cm, the beamfomer channel fil-
ters were recalculated. Steering errors less than this give a negligi-
ble degradation in signal gain.



4.2. Post-filter for Overlapping Speech

The use of a post-filter following the beamformer has been shown
to improve the broadband noise reduction of the array [14], and
lead to better performance in speech recognition applications [11].
Much of this previous work has been based on the use of the (time-
aligned) microphone auto- and cross- spectral densities to estimate
a Wiener transfer function. While this approach has shown good
performance in a number of applications, its formulation is based
on the assumption of low correlation between the noise on dif-
ferent microphones. This assumption clearly does not hold when
the predominant ‘noise’ source is coherent, such as overlapping
speech. In the following we propose a new post-filter better suited
for this case.

Assume that we have S beamformers concurrently tracking S
different people within a room, with (frequency-domain) outputs
bs, s = 1 : S. We further assume that in each bs, the energy of
speech from person s (when active) is higher than the energy level
of all other people. It has been observed (see [12] for a discus-
sion) that the spectrum of the additive combination of two speech
signals can be well approximated by taking the maximum of the
two individual spectra in each frequency bin, at each time. This is
essentially due to the sparse and varying nature of speech energy
across frequency and time, which makes it highly unlikely that two
concurrent speech signals will carry significant energy in the same
frequency bin at the same time. This property was exploited in [12]
to develop a single-channel speaker separation system.

We apply the above property over the S frequency-domain
beamformer outputs to calculate S simple masking post-filters,
hs(f), s = 1 : S,

hs =

8

<

:

1 if s =
arg max

s′
|bs′ |

2, s′ = 1 : S,

0 otherwise.
(1)

Each post-filter is then applied to the corresponding beam-
former output to give the final enhanced output for person s as
zs = hsbs. We note that when only one person is actively speak-
ing, the other beamformers will essentially be providing an esti-
mate of the background noise level, and so the post-filter should
also function to reduce background noise. This post-filter also has
the benefit of low computational cost compared to other formu-
lations which require the calculation of channel auto- and cross-
spectral densities.

5. EXPERIMENTS AND RESULTS

5.1. Data collection

A corpus consisting of several single- and two-person sequences
was recorded in the multi-sensor room. People were asked to read
a number of sentences from the Wall Street Journal (WSJ) speech
corpus, displayed both on the presentation screen and on a laptop
placed on the opposite extreme of the meeting table. In the single-
person sequences, the person occupies a number of typical posi-
tions in the room, moving naturally across locations. In the two-
person sequences, people remain seated, each reading a different
sentence simultaneously. In some sequences, people were asked to
deliberately look away from the microphone array while speaking.
Participants were predominately non-native english speakers. For
comparison purposes, participants wore headset and lapel micro-
phones in all sequences. For the experiments reported here, we use
three test sequences: two single-person (seq-1s-A, seq-1s-B), and

Figure 3: Audio-visual tracking results. First two rows: one-
person sequence. Each column corresponds to frames 89, 1260,
and 1535, respectively. Last two rows: two-person sequence. Each
column corresponds to frames 1, 76, and 136, respectively.

one two-person (seq-2s-A), with duration 80, 124, and 36 seconds,
respectively.

5.2. Tracking

For the test sequences described earlier, the audio-visual tracker
was initialized by hand in the first frame of each view. Videos with
results can be seen at www.idiap.ch/ ∼ gatica/icme05.html.
Regarding head location, all objects were sucessfully tracked with
good accuracy. Sample frames are shown in Fig. 3. Regarding
speaker activity, a double ellipse is drawn over those people for
which the model has inferred speaking activity. The 3-D audio
localisation estimates mapped onto each image plane are denoted
by green +. In general, when people talk naturally (e.g. address-
ing the other speakers at the meeting table), our algorithms de-
tect and infer the source location and speaking status reasonably
well. When people clearly face away from the array, the audio
estimates degrade, and so does the inference of the speaking sta-
tus. For the two-person sequence, the algorithm infers correctly
those segments where only one speaker takes the turn, and of-
ten infers simultaneous activity during overlapped speech periods.
However, one can still observe a “dominant speaker” effect (see
video seq-2s-A.avi). This issue requires further research.

5.3. Speech Enhancement

To evaluate the effectiveness of the microphone array in acquir-
ing a clean speech signal of each person, we calculated the aver-
age segmental signal to noise ratio (SNR) for the following cases:

at: When the speaker is looking at the microphone array.
away: When the speaker is looking away from the array.
all: The entire sequence (weighted mean of at and away).



SNRE (dB)
Single-speaker Two-speaker

Signal at away all crosstalk
headset 20.36 22.76 22.05 16.34
lapel 15.44 14.60 15.28 10.63
beamformer 6.47 6.32 6.43 3.84
post-filter 20.59 19.96 20.63 11.27

Table 1: SNRE (signal-to-noise ratio enhancement) results for
single-speaker and two-speaker sequences. All results are in dB,
and are calculated w.r.t. the level on a single table-top microphone.

crosstalk: The SNR is calculated taking frames with only the
desired speaker as signal, and frames with only
the other speaker as noise.

The first three of these measures were calculated over both the
single-speaker sequences (seq-1s-A, seq-1s-B), and the crosstalk
measure was only calculated on the two-speaker sequence (seq-
2s-A). To normalise for different levels of individual speakers, all
results are quoted with respect to the input on a single table-top mi-
crophone, and so in fact represent the SNR enhancement (SNRE).
These results are shown in Table 1.

These results show a number of encouraging trends. First, by
comparing the at and away measures, we see that the microphone
array enhancement techniques, and implicitly the tracker, are ro-
bust when the speaker is not looking directly at the array. Any level
difference can be explained by the differences in input speech level
over those segments, as seen in the differences between ‘head-
set’ at and away. A second observation is that the final output of
the proposed tracking microphone array technique (‘post-filter’)
is comparable to the headset microphone in reducing background
noise level. While the SNRE levels for ‘beamformer’ are lower
than those for the lapel, it still provides 6.4 dB of improvement
over a single table-top microphone, which is a good result for an
8-element array. It is clear that the proposed post-filter for reduc-
ing crosstalk speech is effective in significantly improving on the
beamformer output. From the crosstalk results, we see that the
proposed tracking microphone array gives a similar reduction of
speech crosstalk as a lapel microphone. It should be noted that this
2-speaker sequence represents the worst-case scenario for speech
separation, as the 2-speakers are sitting next to each other, and are
thus within the main-lobe width of each other’s beamformer at low
frequencies (reflected in the low crosstalk ‘beamformer’ SNRE).
Ongoing experiments are investigating the speech enhancement
performance across a wider range of crosstalk scenarios.

Finally, we note that the above results do not give a complete
picture of performance. As well as assessing noise level reduc-
tion, it is also necessary to quantify any distortion to the desired
speech signal. Ongoing work will assess this by using the tracking
microphone array as input to a speech recognition system.

6. CONCLUSION

We presented a framework to acquire speech in meetings, using
information captured by an audio-visual sensor array. Two encour-
aging results were obtained. The first one confirms that the use of
video for tracking helps provide a stable direction for beamform-
ing, more accurate than the one produced by an audio-only source
localisation method. The second result suggests that the use of the
proposed beamformer post-filter enhances speech quality to a de-

gree close to that of headset mics, and better than lapels. Our study
also raised a number of issues, including the improvement of the
model of simultaneous speech (both in localisation and tracking),
and the need to study the specific effects of each functional block
in the final outcome. These subjects will be studied in the future.
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